Skip to main content

Electrochemical Processes at Biological Interfaces

  • Chapter

Abstract

The conversion of metabolic energy into useful work is a highly efficient process in biological cells. The oxidation of glucose provides a convenient example of a common biological oxidation; the overall reaction may be represented as follows: C6H12O6 + 6O2 → 6CO2 + 6H2O + energy The complete oxidation of a mole of glucose, under standard conditions, would result in a free-energy release of 686 kcal. Were this energy released in the form of heat, it would be sufficient to disrupt cellular structure. Instead, most of the energy obtained from this oxidation, as well as the oxidation of other foodstuffs (carbohydrates, lipids, or amino acids) is utilized, with few exceptions, to synthesize adenosine triphosphate (ATP). The free energy necessary to synthesize ATP from adenosine diphosphate under physiological conditions has been estimated somewhere between 7 and 12kcal/mole.1–3 This is the same amount of energy released from ATP in its transformation into useful work by biological cells. Thus, the free energy available from the oxidation of foodstuffs is transformed into smaller “packets of energy” more readily utilized by biological cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Benzinger, C. Kitzinger, R. Hems, and K. Burton, Biochem J. 71 (1959) 400.

    CAS  Google Scholar 

  2. R. C. Phillips, P. George, and R. J. Rutman, J. Biol. Chem. 244 (1969) 3330.

    CAS  Google Scholar 

  3. L. V. Eggleston and R. Hems, Biochem. J. 52 (1952) 156.

    CAS  Google Scholar 

  4. A. White, P. Handler, and E. L. Smith, Principles of Biochemistry, McGraw-Hill, New York, 1964.

    Google Scholar 

  5. E. E. Crane and R. E. Davies, Biochem. J. 49 (1951) 169.

    CAS  Google Scholar 

  6. H. H. Ussing, Ber. Bunsenges Phys. Chem. 71 (1967) 807.

    CAS  Google Scholar 

  7. M. J. Kushmerich and R. E. Davies, Proc. Roy. Soc. B. 174 (1969) 315.

    Article  Google Scholar 

  8. J. O’M. Bockris and S. Srinivasan, Nature 215 (1967) 197.

    Article  CAS  Google Scholar 

  9. J. O’M. Bockris, Nature 224 (1969) 775.

    Article  CAS  Google Scholar 

  10. A. Szent-Györgyi, Science 93 (1941) 609.

    Article  Google Scholar 

  11. A. Szent-Györgyi, Nature 148 (1941) 157.

    Article  Google Scholar 

  12. F. Gutmann and L. E. Lyons, Organic Semiconductors, Wiley, New York, 1967.

    Google Scholar 

  13. B. Rosenberg and E. Postow, Ann. N.Y. Acad. Sci. 158 (1969) 161.

    Article  CAS  Google Scholar 

  14. B. Rosenberg, Nature 193 (1962) 364.

    Article  CAS  Google Scholar 

  15. S. Maricic, G. Pifat, and V. Pradvic, Biochim. Biophys. Acta 79 (1964) 293.

    Article  CAS  Google Scholar 

  16. A. Szent-Györgyi, Disc. Faraday Soc. 27(11) (1959) 239.

    Google Scholar 

  17. G. King and J. A. Medley, J. Colloid Sci. 4 (1949) 9.

    Article  CAS  Google Scholar 

  18. D. D. Eley and D. I. Spivey, Nature 188 (1960) 725.

    Article  CAS  Google Scholar 

  19. B. Rosenberg, J. Chem. Phys. 36 (1962) 816.

    Article  CAS  Google Scholar 

  20. D. D. Eley, J. Polymer Sci. 17 (1967) 73.

    Google Scholar 

  21. D. DeVault, J. H. Parker, and B. Chance, Nature 215 (1967) 642.

    Article  CAS  Google Scholar 

  22. P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Wescott, Nature 194 (1962) 979.

    Article  CAS  Google Scholar 

  23. P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Wescott, Circulation 26 (1962) 1167.

    CAS  Google Scholar 

  24. H. T. Tien and A. L. Diana, Chem. Phys. Lipids 2 (1968) 55.

    Article  CAS  Google Scholar 

  25. P. Läuger, W. Lesslauer, E. Marti, and J. Richter. Biochim. Biophys. Acta 135 (1967) 20.

    Article  Google Scholar 

  26. P. Läuger, J. Richter, and W. Lesslauer, Ber. Bunsenges Phys. Chem. 71 (1967) 906.

    Google Scholar 

  27. A. Finkelstein and A. Cass, J. Gen. Physiol. 52 (1968) 145s.

    Article  CAS  Google Scholar 

  28. Ye. A. Liberman, V. P. Topaly, L. M. Tsofina, and A. M. Shkrob, Biophysics 14 (1969)56.

    CAS  Google Scholar 

  29. H. Kallman and M. Pope, J. Chem. Phys. 32 (1960) 300.

    Article  Google Scholar 

  30. H. Kallman and M. Pope, Nature 186 (1960) 31.

    Article  Google Scholar 

  31. B. Rosenberg and G. L. Jendrasiak, Chem. Phys. Lipids 2 (1968) 47.

    Article  CAS  Google Scholar 

  32. B. B. Bhowmik, G. L. Jendrasiak, and B. Rosenberg, Nature 215 (1967) 842.

    Article  CAS  Google Scholar 

  33. B. Rosenberg and B. B. Bhowmik, Chem. Phys. Lipids 3 (1969) 109.

    Article  CAS  Google Scholar 

  34. B. Rosenberg, B. B. Bhowmik, H. C. Harder, and E. Postow, J. Chem. Phys. 49 (1968) 4108.

    Article  CAS  Google Scholar 

  35. M. K. Jain, A. Strickholm, F. P. White, and E. H. Cordes, Nature 227 (1970) 705.

    Article  CAS  Google Scholar 

  36. H. T. Tien and S. P. Verma, Nature 227 (1970) 1232.

    Article  CAS  Google Scholar 

  37. L. J. Mandel, Ph.D. Dissertation, Univ. of Pennsylvania, 1969.

    Google Scholar 

  38. F. H. Johnson, H. Eyring, and M. J. Polissar, The Kinetic Basis of Molecular Biology, Wiley, New York, 1954.

    Google Scholar 

  39. J. O’M. Bockris and A. K. Reddy, Modern Electrochemistry, Plenum, New York, 1970.

    Google Scholar 

  40. S. Srinivasan, H. Wroblowa, and J. O’M. Bockris, Adv. Catalysis 17 (1967) 352.

    Google Scholar 

  41. M. Myamlin and Y. Pleskov, Electrochemistry of Semiconductors, Plenum, New York, 1967.

    Google Scholar 

  42. K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York, 1969.

    Google Scholar 

  43. B. Rosenberg and H. C. Pant, Chem. Phys. Lipids 4 (1970) 203.

    Article  CAS  Google Scholar 

  44. H. C. Pant and B. Rosenberg, Chem. Phys. Lipids 6 (1971) 39.

    Article  CAS  Google Scholar 

  45. E. J. Lund, J. Exp. Zool. 51 (1928) 265.

    Article  CAS  Google Scholar 

  46. J. S. Friedenwald and R. D. Stiehler, Arch. Opthal N.Y. 20 (1938) 761.

    Article  Google Scholar 

  47. R. D. Stiehler and L. B. Flexner, J. Biol. Chem. 126 (1938) 603.

    CAS  Google Scholar 

  48. H. Lundegardh, Nature 143 (1939) 203.

    Article  CAS  Google Scholar 

  49. E. J. Conway and T. C. Brady, Nature 162 (1948) 456.

    Article  CAS  Google Scholar 

  50. R. E. Davies and A. G. Ogston, Biochem. J. 46 (1950) 324.

    CAS  Google Scholar 

  51. R. E. Davies and H. A. Krebs, Biochem. Soc. Symp. 8 (1952) 77.

    Google Scholar 

  52. R. E. Davies, Biol. Rev. Cambr. Phil. Soc. 26 (1951) 87.

    Article  CAS  Google Scholar 

  53. E. J. Conway, The Biochemistry of Gastric Acid Secretion, Charles C. Thomas, Springfield, Ill. 1953.

    Google Scholar 

  54. R. N. Robertson, Biol. Rev. Cambr. Phil. Soc. 35 (1960) 231.

    Article  CAS  Google Scholar 

  55. P. Mitchell, Nature 191 (1961) 144.

    Article  CAS  Google Scholar 

  56. P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, Cornwall, 1966.

    Google Scholar 

  57. P. Mitchell, Fed. Proc. 26 (1967) 1370.

    CAS  Google Scholar 

  58. B. Chance, C. P. Lee, and L. Mela, Fed. Proc. 26 (1967) 1341.

    CAS  Google Scholar 

  59. B. Chance and L. Mela, J. Biol. Chem. 241 (1966) 4588.

    CAS  Google Scholar 

  60. B. Chance and L. Mela, J. Biol. Chem. 242 (1967) 830.

    CAS  Google Scholar 

  61. Ye. A. Liberman, V. P. Topaly, L. M. Tsofina, A. A. Jasaitis, and V. P. Skulachev, Nature 222 (1969) 1076.

    Article  CAS  Google Scholar 

  62. M. Montai, B. Chance, and C. P. Lee, J. Mem. Biol. 2 (1970) 201.

    Article  Google Scholar 

  63. A. L. Lehninger, The Mitochondrion, Benjamin, New York, 1964.

    Google Scholar 

  64. B. Chance, Energy Linked Functions of Mitochondria, Academic Press, New York, 1963.

    Google Scholar 

  65. E. Racker, Membranes of Mitochondria and Chloroplasts, Van Nostrand Reinhold Co., New York, 1970.

    Google Scholar 

  66. J. Bielawski, T. E. Thompson, and A. L. Lehninger, Biochem Biophys. Res. Comm. 24 (1966) 948.

    Article  CAS  Google Scholar 

  67. Ye. A. Liberman, V. P. Topaly, L. M. Tsofina, A. A. Jasaitis, and V. P. Skulachev, Nature 222 (1969) 1076.

    Article  CAS  Google Scholar 

  68. P. Mitchell and J. Moyle, Nature 208 (1965) 1205.

    Article  CAS  Google Scholar 

  69. M. Schwartz, Nature 219 (1968) 915.

    Article  CAS  Google Scholar 

  70. M. Cohn and G. R. Drysdale, J. Biol. Chem. 216 (1955) 831.

    CAS  Google Scholar 

  71. J. H. Wang, Science 167 (1970) 25.

    Article  CAS  Google Scholar 

  72. S. I. Tu and J. H. Wang, Biochemistry 9 (1970) 4505.

    Article  CAS  Google Scholar 

  73. P. D. Boyer, in Biological Oxidations, Ed. by T. P. Singer, Wiley, New York, 1968.

    Google Scholar 

  74. J. C. Skou, Physiol. Rev. 45 (1965) 596.

    CAS  Google Scholar 

  75. B. C. Pressman, Fed. Proc. 27 (1968) 1283.

    CAS  Google Scholar 

  76. P. J. Garrahan and I. M. Glynn, Nature 211 (1966) 1414.

    Article  CAS  Google Scholar 

  77. I. M. Glynn, J. Physiol. 169 (1963) 452.

    CAS  Google Scholar 

  78. L. J. Mandel, Nature 225 (1970) 450.

    Article  CAS  Google Scholar 

  79. A. Szent-Györgyi, Science 161 (1968) 988.

    Article  Google Scholar 

  80. F. W. Cope, Bull. Math. Biophys. 27 (1965) 237.

    Article  CAS  Google Scholar 

  81. F. W. Cope, Bull. Math. Biophys. 31 (1969) 519.

    Article  CAS  Google Scholar 

  82. R. E. Taylor, J. W. Moore, and K. S. Cole, Biophys. J. 1 (1960) 161.

    Article  CAS  Google Scholar 

  83. K. S. Cole, Membranes, Ions, and Impulses, Univ. of California Press, 1968.

    Google Scholar 

  84. B. Hille, J. Gen. Physiol. 51 (1968) 221.

    Article  CAS  Google Scholar 

  85. P. N. Sawyer and S. Srinivasan, Am. J. Surg. 114 (1967) 42.

    Article  CAS  Google Scholar 

  86. E. Gruenstein and J. Wynn, J. Theoret. Biol. 26 (1970) 343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Mandel, L.J. (1972). Electrochemical Processes at Biological Interfaces. In: Bockris, J.O., Conway, B.E. (eds) Modern Aspects of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7440-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7440-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7442-2

  • Online ISBN: 978-1-4615-7440-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics