Skip to main content

Quantum Mechanical Scattering Theory for Chemical Reactions

  • Chapter
Methods in Computational Molecular Physics

Part of the book series: NATO ASI Series ((NSSB,volume 293))

Abstract

Quantum mechanical reactive scattering theory provides the most complete description of a chemical reaction allowed by the basic laws of nature. Thus ever since the 1960’s, when crossed molecular beam experiments opened the door to studying reactions at the most detailed state-to-state level, there has been intense interest and effort devoted to developing the theory to the practical stage that calculations can be carried out for real chemical reactions. These lectures review reactive scattering theory, in particular recent theoretical developments that have played a key role in the dramatic theoretical advances since -1987. Two other recent reviews that I recommend are refs. 1 and 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Manolopoulos and D. C. Clary, Ann. Repts. C. (Roy. Soc. Chem.) 86, 95 (1989).

    Article  Google Scholar 

  2. W. H. Miller, Ann. Rev. Phys. Chem. 41, 245 (1990).

    Article  ADS  Google Scholar 

  3. W. A. Lester, Jr., in Dynamics of Molecular Collisions. Part A, ed. W. H. Miller, p. 1, Plenum, New York, N.Y. (1976).

    Chapter  Google Scholar 

  4. J. C. Light, in Atom-Molecule Collision Theory, ed. R. B. Bernstein, p. 239, Plenum, New York, N.Y. (1979).

    Chapter  Google Scholar 

  5. D. Secrest, in Atom-Molecule Collision Theory, ed. R. B. Bernstein, p. 265, Plenum, New York, N.Y. (1979).

    Chapter  Google Scholar 

  6. W. H. Miller, J. Chem. Phys. 50, 407 (1969).

    Article  ADS  Google Scholar 

  7. P. G. Burke and A. J. Taylor, Proc. Phys. Soc. London 88, 549 (1966).

    Article  ADS  Google Scholar 

  8. Y. C. Tang, M. LeMere, and D. R. Thompson, Phys. Rep. 47, 167 (1978).

    Article  ADS  Google Scholar 

  9. G. Wolken and Karplus, J. Chem. Phys. 60, 351 (1974).

    ADS  Google Scholar 

  10. W. Kohn, Phys. Rev. 74, 1763 (1948).

    Article  ADS  MATH  Google Scholar 

  11. T.-Y. Wu and T. Ohmura, Quantum Theory of Scattering, pp. 57–68, Prentice-Hall, Englewood Cliffs, N.J. (1962).

    MATH  Google Scholar 

  12. W. H. Miller and B. M. D. D. Jansen op de Haar, J. Chem. Phys. 865, 6213 (1987).

    Article  ADS  Google Scholar 

  13. M. Kamimura, Prog. Theor. Phys. Suppl. 62, 236 (1977).

    Google Scholar 

  14. J. Z. H. Zhang, S.-I. Chu, and W. H. Miller, J. Chem. Phys. 88, 6233 (1988).

    Article  ADS  Google Scholar 

  15. C. Schwartz Phys. Rev. 124 1468 (1961);

    Google Scholar 

  16. C. Schwartz Ann. Phys. 10, 36 (1961).

    ADS  Google Scholar 

  17. R. K. Nesbit, Variational Methods in Electron-Atom Scattering Theory, pp. 30–50, Plenum, New York, N.Y. (1980).

    Book  Google Scholar 

  18. A. D. Isaacson, C. W. McCurdy, and W. H. Miller, Chem. Phys. 34, 311 (1978).

    Article  Google Scholar 

  19. A. J. F. Siegert, Phys. Rev. 56, 750 (1939).

    Article  ADS  Google Scholar 

  20. J. Nuttall and H. L. Cohen, Phys. Rev. 188, 1542 (1969).

    Article  ADS  Google Scholar 

  21. F. A. McDonald and J. Nuttall, Phys. Rev. C 6, 121 (1972).

    ADS  Google Scholar 

  22. R. T. Baumel, M. C. Crocker, and J. Nuttall, Phys. Rev. A 12, 486 (1975).

    ADS  Google Scholar 

  23. T. N. Rescigno and W. P. Reinhardt, Phys. Rev. A. 8, 2828 (1973);

    MathSciNet  ADS  Google Scholar 

  24. (b) T. N. Rescigno and W. P. Reinhardt 10, 158 (1974).

    Google Scholar 

  25. B. R. Johnson and W. P. Reinhardt, ibid. 29, 2933 (1984).

    Article  ADS  Google Scholar 

  26. C. W. McCurdy and T. N. Rescigno, Phys. Rev. A 21, 1499 (1980);

    ADS  Google Scholar 

  27. C. W. McCurdy and T. N. Rescigno, Phys. Rev. A 31, 624 (1985).

    Google Scholar 

  28. For reviews, see

    Google Scholar 

  29. B. R. Junker, Adv. At. Mol. Phys. 18, 207 (1982).

    Google Scholar 

  30. W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982).

    Article  Google Scholar 

  31. Y. K. Ho, Phys. Rep. 99, 1 (1983).

    Article  ADS  Google Scholar 

  32. J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 91, 1528 (1989).

    Article  ADS  Google Scholar 

  33. J. Z. H. Zhang and W. H. Miller, J. Chem. Phys. 89, 4454 (1988).

    Article  ADS  Google Scholar 

  34. J. Z. H. Zhang and W. H. Miller, J. Phys. Chem. 94, 7785 (1990).

    Article  Google Scholar 

  35. J. Z. H. Zhang, J. Chem. Phys. 94, 6047 (1991).

    Article  ADS  Google Scholar 

  36. A. C. Peet and W. H. Miller, Chem. Phys. Lett. 149, 257 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  37. W. Yang, A. C. Peet, and W. H. Miller, J. Chem. Phys. 91, 7537 (1989).

    Article  ADS  Google Scholar 

  38. J. Z. H. Zhang, D. L. Yeager, and W. H. Miller, Chem. Phys. Lett. 173, 489 (1990).

    Article  ADS  Google Scholar 

  39. J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 153, 465 (1988).

    Article  ADS  Google Scholar 

  40. J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 159, 130 (1989).

    Article  ADS  Google Scholar 

  41. J. Z. H. Zhang, J. Chem. Phys., in press.

    Google Scholar 

  42. J.-C. Nieh and J. J. Valentini, Phys. Rev. Lett. 60, 519 (1988).

    Article  ADS  Google Scholar 

  43. J.-C. Nieh and J. J. Valentini, J. Chem. Phys. 92, 1083 (1990).

    Article  ADS  Google Scholar 

  44. D. A. V. Kliner, D. E. Adelman, and R. N. Zare, J. Chem. Phys. 94, 1069 (1991).

    Article  ADS  Google Scholar 

  45. W. H. Miller and J. Z. H. Zhang, J. Phys. Chem. 95, 12 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, W.H. (1992). Quantum Mechanical Scattering Theory for Chemical Reactions. In: Wilson, S., Diercksen, G.H.F. (eds) Methods in Computational Molecular Physics. NATO ASI Series, vol 293. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7419-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7419-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7421-7

  • Online ISBN: 978-1-4615-7419-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics