Skip to main content

Parallel Computers and Concurrent Computation in the Chemical Sciences

  • Chapter
Methods in Computational Chemistry
  • 133 Accesses

Abstract

Computers play a central role in the practical applications of the vast majority of the apparatus of theoretical chemistry. Indeed, the outlook for performing accurate quantum mechanical calculations of the electronic structure and properties of molecules changed radically in the early 1950s with the advent of the electronic digital computer. Since that time, steady progress has been made with both the theoretical apparatus and the computational techniques required to approximate the electronic structure of molecules, and we now find ourselves able not only to perform high-precision calculations for small molecules but also to compute the properties of quite large molecular systems. In more recent years, other areas of applications for computers in chemistry have arisen, for example, the simulation of liquids and solids using Monte Carlo and molecular dynamics methods, the study of complex reaction schemes, and the use of interactive molecular graphics in the study of biomolecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Future Facilities for Advanced Research Computing. The report of a Joint Working Party, June 1985 (Advisory Board for the Research Councils, Computer Board for Universities and Research Councils, University Grants Committee ), SERC, 1985.

    Google Scholar 

  2. S. Wilson, Chemistry by Computer, An overview of the applications of computers in chemistry, Plenum, New York (1986).

    Google Scholar 

  3. D. M. Silver and K. Ruedenberg, J. Chem. Phys. 49, 4301 (1968).

    Article  CAS  Google Scholar 

  4. D. M. Silver and K. Ruedenberg, J. Chem. Phys. 49, 4306 (1968).

    Article  CAS  Google Scholar 

  5. R. E. Christofferson and K. Ruedenberg, J. Chem. Phys. 49, 4285 (1968).

    Article  Google Scholar 

  6. E. L. Mehler and K. Ruedenberg, J. Chem. Phys. 50, 2575 (1969).

    Article  CAS  Google Scholar 

  7. C. A. Coulson, Proc. Cambridge Philos. Soc. 34, 204 (1938).

    Article  Google Scholar 

  8. R. McWeeny, Foreword, Methods in Computational Chemistry, Plenum Press, 1, New York (1987).

    Google Scholar 

  9. R. G. Parr and B. L. Crawford, National Academy of Sciences Conference on Quantum Mechanical Methods in Valence Theory, Proc. Natl. Acad. Sci. U.S. 38, 547 (1952).

    Article  CAS  Google Scholar 

  10. H. F. Schaefer III, Quantum Chemistry, The development of ab initio methods in molecular electronic structure theory, Clarendon Press, Oxford (1984).

    Google Scholar 

  11. P. Lykos and I. Shavitt, Supercomputers in Chemistry, American Chemical Society, Washington D.C., 1981.

    Book  Google Scholar 

  12. P. Lykos, Computers in the world of chemistry, Adv. Comput. 21, 275 (1982).

    Article  Google Scholar 

  13. V. R. Saunders and J. van Lenthe, The direct CI method. A detailed analysis, Molec. Phys. 48, 923 (1983).

    Article  CAS  Google Scholar 

  14. J. J. Dongarra, Performance of various computers using standard linear equations software in a FORTRAN environment, Technical Memorandum No. 23, Mathematics and Computer Science Division, Argonne National Laboratory (1988).

    Google Scholar 

  15. R. McWeeny and B. T. Pickup, Quantum theory of molecular electronic structure, Rep. Progr. Phys. 43, 1065 (1980).

    Article  Google Scholar 

  16. S. Wilson, Electron Correlation in Molecules, Clarendon Press, Oxford (1984).

    Google Scholar 

  17. R. W. Hockney and C. J. Jesshope, Parallel Computers, Adam Hilger, Bristol (1981).

    Google Scholar 

  18. H. T. Kung, J. ACM 23, 252 (1979).

    Google Scholar 

  19. J. J. Dongarra, D. C. Sarensen, K. Connolly, and J. Patterson, Programming methodology and performance issues for advanced computer architecture, Parallel Comput. 8, 41 (1988).

    Article  Google Scholar 

  20. M. J. Flynn, Some computer organizations and their effectiveness, I.E.E.E. Trans. Comput. C 21, 948 (1972).

    Article  Google Scholar 

  21. R. W. Hockney, MIMD computing in the USA-1984, Parallel Comput. 2, 119 (1988).

    Article  Google Scholar 

  22. J. T. Schwartz, ACM Trans. Prog. Lang. Syst. 2, 484 (1980).

    Article  Google Scholar 

  23. V. R. Saunders, Molecular integrals for Gaussian-type functions, in Methods in Computational Molecular Physics ( G. H. F. Diercksen & S. Wilson eds.), Reidel, Dordrecht (1983).

    Google Scholar 

  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York (1965).

    Google Scholar 

  25. M. Metcalfe and J. Reid, FORTRAN 8x, MacMillan, New York (1988).

    Google Scholar 

  26. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subprograms for FORTRAN usage, ACM Trans. Math. Software 5, 308 (1979).

    Article  Google Scholar 

  27. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Algorithm 539: Basic linear algebra subprograms for FORTRAN usage, ACM Trans. Math. Software 5, 324 (1979).

    Article  Google Scholar 

  28. J. J. Dongarra, J. J. Du Croz, S. Hammarling, and R. Hanson, An extended set of FORTRAN basic linear algebra subprograms: Model implementation and test programs, Argonne National Laboratory report No. ANL-MCS-TM-81 (1986).

    Google Scholar 

  29. J. J. Dongarra, J. J. Du Croz, S. Hammarling, and R. Hanson, An extended set of FORTRAN basic linear algebra subprograms, Argonne National Laboratory report No. ANL-MCS-TM-41 (1986).

    Google Scholar 

  30. J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. Hammarling, A proposal for a set of level 3 basic linear algebra subprograms, Argonne National Laboratory report No. ANLMCS-TM-88 (1987).

    Google Scholar 

  31. J. J. Du Croz, P. J. D. Mayes, J. Wasniewski, and S. Wilson, Application of level 2 BLAS in the NAG library, Parallel Comput. 8, 345 (1988).

    Article  Google Scholar 

  32. K. Jankowski, in Methods in Computational Chemistry,Vol. 1, Electron Correlation in Atoms and Molecules,Plenum Press, New York (1987), Chap. 1.

    Google Scholar 

  33. I. Lindgren and J. Morrison, Atomic Many-Body Theory (2nd. Edition), Springer, Berlin (1986).

    Google Scholar 

  34. S. Wilson, The Many-Body Perturbation Theory of Atoms and Molecules, Adam Hilger, Bristol (1989).

    Google Scholar 

  35. M. Urban, I. Cernusak, V. Kello, and J. Noga, in Methods in Computational Chemistry,Vol. 1, Electron Correlation in Atoms and Molecules,Plenum Press, New York (1987), Chap. 2.

    Google Scholar 

  36. S. Wilson, Diagrammatic many-body perturbation theory of atomic and molecular electronic structure, Comput. Phys. Rep. 2, 389 (1985).

    Article  CAS  Google Scholar 

  37. D. Moncrieff, D. J. Baker, and S. Wilson, Diagrammatic many-body perturbation expansion for atoms and molecules. VI. Experiments in vector processing and parallel processing for second order energy calculations, Comput. Phys. Commun. 55, 31 (1989).

    Article  CAS  Google Scholar 

  38. S. Wilson and V. R. Saunders, Diagrammatic many-body perturbation expansion for atoms and molecules. V. Comput. Phys. Commun. 19, 293 (1980).

    Article  CAS  Google Scholar 

  39. M. F. Guest and S. Wilson, in Supercomputers in Chemistry, p. 1 ( P. Lykos and I. Shavitt, eds.), American Chemical Society, Washington D.C. (1981).

    Google Scholar 

  40. S. Wilson, in Proc. 5th. Seminar on Computational Problems in Quantum Chemistry (P. Th. van Duijknen and W. C. Nieuwpoort, eds. ), Groningen (1981).

    Google Scholar 

  41. S. Wilson, in Methods in Computational Molecular Physics ( G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).

    Google Scholar 

  42. B. H. Wells and S. Wilson, J. Phys. B: At. Mol. Phys. 19, 2411 (1986).

    Article  CAS  Google Scholar 

  43. D. M. Silver, S. Wilson, and C. F. Bunge, Phys. Rev. A 19, 1375 (1979).

    Article  CAS  Google Scholar 

  44. S. Wilson, in Methods in Computational Chemistry,Vol. 1, Electron Correlation in Atoms and Molecules,Plenum Press, New York (1987), Chap. 3.

    Google Scholar 

  45. J. Almlof, K. Faegri, and K. Korsell, Principle for a direct SCF approach to ab initio calculations, J. Comput. Chem. 3, 385 (1982).

    Article  Google Scholar 

  46. H. M. Quiney, I. P. Grant, and S. Wilson, On the Dirac equation in the algebraic approximation, Phys. Scr. 36, 460 (1987).

    Article  CAS  Google Scholar 

  47. H. M. Quiney, I. P. Grant, and S. Wilson, On the accuracy of the algebraic approximation in relativistic electronic structure studies, in Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, Proc. NATO Advanced Research Workshop, April 1988, Versailles, Reidel, Dordrecht (1989).

    Google Scholar 

  48. H. M. Quiney, I. P. Grant, and S. Wilson, On the accuracy of Dirac—Hartree—Fock calculations using analytic basis sets, J. Phys. B: At. Mol. Opt. Phys. 22, L45 (1989).

    Article  Google Scholar 

  49. S. Wilson, Relativistic molecular structure calculations, in Methods in Computational Chemistry,Vol. 2, Relativistic Effects in Atoms and Molecules,Plenum Press, New York (1987), Chap. 2.

    Google Scholar 

  50. H. M. Quiney, Relativistic many-body perturbation theory, in Methods in Computational Chemistry,Vol. 2, Relativistic effects in Atoms and Molecules,Plenum Press, New York (1988), Chap. 5.

    Google Scholar 

  51. H. M. Quiney, I. P. Grant, and S. Wilson, On the relativistic many-body perturbation theory of atomic and molecular electronic structure, in Many-Body Methods in Quantum Chemistry ( U. Kaldor, ed.), Lecture Notes in Chemistry, Springer-Verlag, Berlin (1989).

    Google Scholar 

  52. L. Laaksonen, I. P. Grant, and S. Wilson, The Dirac equation in the algebraic approximation. VI. Molecular self-consistent field studies using basis sets of Gaussian-type functions, J. Phys. B: At. Mol. Opt. Phys. 21, 1969 (1988).

    Article  CAS  Google Scholar 

  53. Y: K. Kim, Relativistic self-consistent-field theory for closed-shell atoms, Phys. Rev. 154, 17 (1967).

    Article  Google Scholar 

  54. M. Krauss, Critical review of ab initio energy surface, in Proceedings of the Conference on Potential Energy Surfaces in Chemistry ( W. A. Lester, ed.), IBM, San Jose, California (1971).

    Google Scholar 

  55. J. L. Connors, Comput. Phys. Commun. 17, 117 (1979).

    Article  Google Scholar 

  56. N. S. Ostlund, in Personal Computers in Chemistry, American Chemical Society, Washington, D.C., 1977.

    Google Scholar 

  57. E. P. Wigner, in Proc. Internat. Confer. Theoret. Phys., Science Council of Japan, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, S. (1990). Parallel Computers and Concurrent Computation in the Chemical Sciences. In: Wilson, S. (eds) Methods in Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7416-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7416-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7418-7

  • Online ISBN: 978-1-4615-7416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics