Skip to main content

Optimal switching between a pair of Brownian motions

  • Chapter
Mathematics in Industrial Problems

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 24))

  • 255 Accesses

Abstract

Although engineering models are concerned with multi-step decision making in discrete time, the continuous analog may provide a good insight as well as a good approximation. Here we deal with the situation where a number of controlled processes are available, and one is allowed to switch from one process to another; the goal is to maximize a certain payoff which depends on those processes chosen by the switching mechanism. This type of problem occurs in dynamic allocation of resources (cf. armed bandit problems [1]), in supply and demand strategies [2], etc. We shall deal here with the case where the control mechanism can switch from one diffusion process to another in any non-anticipative way and with no penalty. This problem was studied by N.V. Krylov in a sequence of papers during the 1970’s; his results are described in detail in his book [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mandelbaum, Navigating and stopping multi-parameter bandit processes, In W. Fleming and P.L. Lions, editors, IMA Volumes in Mathematics and its Applications, 10, Stochastic Differential Systems, Stochastic Control Theory and Applications, Springer-Verlag, New York, 1988, pp. 339–372.

    Google Scholar 

  2. A. Bensoussan and J.L. Lions, Contrôle Impulsionnel et Inéquations Quasivariationelles, Dunod, Paris, 1982.

    Google Scholar 

  3. N.V. Krylov, Controlled Diffusion Processes, Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  4. A. Friedman, Stochastic Differential Equations and Applications, vol 1, Academic Press, New York, 1975.

    MATH  Google Scholar 

  5. L.C. Evans and A. Friedman, Optimal stochastic switching and the Dirichlet problems for the Bellman equation, Trans. Amer. Math. Soc., 253 (1979), 253–365.

    Article  MathSciNet  Google Scholar 

  6. P.L. Lions, Resolution analytique des problemes de Bellman-Dirichlet, Acta Math., 146 (1981), 151–166.

    Article  MathSciNet  MATH  Google Scholar 

  7. L.C. Evans and P.L. Lions, Résolution des équations de HamiltonJacobi-Bellman, C.R. Acad. Sci. Paris, 290, no. 22 (1980), A1049–1052.

    MathSciNet  Google Scholar 

  8. L.C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math., 35 (1982), 333–363.

    MATH  Google Scholar 

  9. P.L. Lions, Contrôle de diffusions dans RN, C.R. Acad Sci. Paris, 288, ser. A (1979), 339–342.

    Google Scholar 

  10. P.L. Lions, Control of diffusion processes in IAN, Comm. Pure Appl. Math., 34 (1981), 121–147.

    MATH  Google Scholar 

  11. P.L. Lions, Équations de Hamilton-Jacobi-Bellman dégénérées, C.R. Acad. Sci. Paris, 289, ser. A (1979), 329–332.

    Google Scholar 

  12. A. Mandelbaum, L.A. Shepp and R.J. Vanderbei, Optimal switching between a pair of Brownian motion, Ann. of Prob., to appear.

    Google Scholar 

  13. R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Archive Rat. Mech. Anal., 101 (1988), 1–27.

    Article  MATH  Google Scholar 

  14. P.L. Lions, A remark on the Boni maximum principle, Proc. Amer. Math. Soc., 88 (1983), 503–508.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.-M. Bony, Principe du maximum dans les espaces de Sobolev, C.R. Acad. Sci. Paris, 265 (1967), 333–336.

    MathSciNet  MATH  Google Scholar 

  16. M. Chicco, Principio di massimo per soluzioni di equazioni ellitiche del secondo ordine di tipo Cordes, Ann. Mat. Pura Appl., 100 (1974), 239–258.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Gilbarg and N.L. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  18. J.L. Lions, Optimal control of diffusion processes and HamiltonJacobi-Bellman equations. Part 2. Viscosity solutions and uniqueness, Comm. P.D.E., 8 (1983), 1229–1276.

    Article  MATH  Google Scholar 

  19. N.V. Krylov, Nonlinear Elliptic and Parabolic Equation of the Second Order, Moscow, Nauka, 1985; (in English: D. Reidel Publishing Company, Dordrecht, Holland, 1987 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Friedman, A. (1989). Optimal switching between a pair of Brownian motions. In: Mathematics in Industrial Problems. The IMA Volumes in Mathematics and Its Applications, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7402-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7402-6_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7404-0

  • Online ISBN: 978-1-4615-7402-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics