Skip to main content

Reducing the Monopole Abundance

  • Chapter
Magnetic Monopoles

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 102))

Abstract

When a typical grand unified theory (GUT) is considered in the context of standard cosmology, one is led immediately to the conclusion that far too many magnetic monopoles would have been produced in the very early history of the universe.1,2 In this talk I will discuss two possible mechanisms which might suppress monopole production. The first is the idea of a high temperature superconductor, as proposed by Langacker and Pi.3 The second is the inflationary universe.4,5,6 Befitting my biases, I will devote most of my time to the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Preskill, Phys. Rev. Lett. 43, 1365 (1979).

    Article  ADS  Google Scholar 

  2. Ya. B. Zeldovich and M. Y. Khlopov, Phys. Lett. 79B, 239 (1978).

    ADS  Google Scholar 

  3. P. Langacker and S.-Y. Pi, Phys. Rev. Lett. 45, 1 (1980).

    Article  ADS  Google Scholar 

  4. See also F. A. Bais and P. Langacker, Nucl. Phys. B197, 520 (1982).

    Article  ADS  Google Scholar 

  5. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  6. A. D. Linde, Phys. Lett. 108B, 389 (1982).

    MathSciNet  ADS  Google Scholar 

  7. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  8. G. ’t Hooft, Nucl. Phys. B 79, 276 (1974)

    Article  ADS  Google Scholar 

  9. A. M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 20, 430 (1974) [JETP Lett. 20, 194 (1974)].

    Google Scholar 

  10. T. W. B. Kibble, J. Phys. A 9, 1387 (1976).

    Article  ADS  Google Scholar 

  11. I set N = c = k = 1, and I take the GeV as my fundamental unit. Then 1 GeV = 1.16 × 1013 °K = 1.78 × 10-24 gm, and 1 GeV-1 = 1.97 × 10-14 cm = 6.58 × 10-25 sec.

    Google Scholar 

  12. J. P. Preskill (private communication); A. H. Guth and S.-H. Tye, Phys. Rev. Lett. 44, 631, 963 (1980);

    Article  ADS  Google Scholar 

  13. M. B. Einhorn, D. L. Stein, and D. Toussaint, Phys. Rev. D 21, 3295 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

    Article  ADS  Google Scholar 

  15. For a general background in cosmology, see S. Weinberg, “Gravitation and Cosmology,” Wiley, New York (1972).

    Google Scholar 

  16. At a less technical level, see J. Silk, “The Big Bang,” W. H. Freeman & Co., San Francisco (1980)

    Google Scholar 

  17. S. Weinberg, “The First Three Minutes,” Bantam Books, New York (1977).

    Google Scholar 

  18. S. Coleman, Phys. Rev. D 15, 2929 (1977);

    Article  ADS  Google Scholar 

  19. C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977);

    Article  ADS  Google Scholar 

  20. see also S. Coleman in “The Whys of Subnuclear Physics,” Ettore Majorana, Erice, 1977, A. Zichichi, ed., Plenum, New York (1979).

    Google Scholar 

  21. A. H. Guth and E. J. Weinberg, Nucl. Phys. B 212, 321 (1983).

    Article  ADS  Google Scholar 

  22. S. W. Hawking, I. G. Moss, and J. M. Stewart, Phys. Rev. D 26, 2681 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).

    Article  ADS  Google Scholar 

  24. A. H. Guth and S.-H. Tye, Ref. 10.

    Google Scholar 

  25. W. Rindler, Mon. Not. R. Astron. Soc. 116, 663 (1956).

    ADS  Google Scholar 

  26. See also S. Weinberg, “Gravitation and Cosmology,” Ref. 12, pp. 489–490 and 525–526.

    Google Scholar 

  27. A. H. Guth, to be published in “Asymptotic Realms of Physics: Essays in Honor of Francis E. Low,” A. H. Guth, K. Huang, and R. L. Jaffe, eds., MIT Press, Cambridge, Massachusetts (1983).

    Google Scholar 

  28. R. H. Dicke and P. J. E. Peebles, in “General Relativity: An Einstein Centenary Survey,” S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge, U.K. (1979).

    Google Scholar 

  29. G. Steigman, Proceedings of the Europhysics Study Conference: Unification of the Fundamental Interactions II, Erice, October 6–14, 1981.

    Google Scholar 

  30. M. Sher, Phys. Rev. D 24, 1699 (1981).

    Article  ADS  Google Scholar 

  31. J. A. Frieman and C. M. Will, Ap. J. 259, 437 (1982);

    Article  ADS  Google Scholar 

  32. J. D. Barrow, to appear in the “Proceedings of the Nuffield Workshop on the Very Early Universe,” G. W. Gibbons, S. W. Hawking, and S. T. C. Siklos, eds., Cambridge University Press, Cambridge, U.K. (1983).

    Google Scholar 

  33. S. W. Hawking and I. G. Moss, Phys. Lett. 110B. 35 (1982).

    ADS  Google Scholar 

  34. D. Atkatz and H. Pagels, Phys. Rev. D 25, 2065 (1982) and references therein.

    Article  ADS  Google Scholar 

  35. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  36. S. W. Hawking and I. G. Moss, Ref. 24; A. Vilenkin and L. H. Ford, Phys. Rev. D 26, 1231 (1982);

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Vilenkin, Phase Transitions in de Sitter Space, Tufts Univ. preprint TUTP-82–10 (1982)

    Google Scholar 

  38. P. Hut and F. R. Klinkhamer, Phys. Lett. 104B, 439 (1981).

    ADS  Google Scholar 

  39. A. H. Guth, to appear in the “Proceedings of the Nuffield Workshop on the Very Early Universe,” Ref. 23.

    Google Scholar 

  40. A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982)

    Article  ADS  Google Scholar 

  41. L. F. Abbott, E. Farhi, and M. B. Wise, Phys. Lett. 117B, 29 (1982)

    ADS  Google Scholar 

  42. A. D. Dolgov and A. D. Linde, Phys. Lett. 116B, 329 (1982).

    ADS  Google Scholar 

  43. G. Lazarides, Q. Shafi, and W. P. Trower, Phys. Rev. Lett. 49, 1756 (1982).

    Article  ADS  Google Scholar 

  44. E. B. Bogomol’nyi, Sov. J. of Nucl. Phys. 24, 449 (1976)

    MathSciNet  Google Scholar 

  45. M. K. Prasad and C.M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).

    Article  ADS  Google Scholar 

  46. E. Witten, Nucl. Phys. B 160, 57 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  47. A. K. Drukier and S. Nussinov, Phys. Rev. Lett. 49, 102 (1982).

    Article  ADS  Google Scholar 

  48. This quip was shamelessly stolen from Curt Callan.

    Google Scholar 

  49. M. S. Turner, Phys. Lett. 115B, 95 (1982).

    ADS  Google Scholar 

  50. A. A. Starobinsky, manuscript in preparation; A. H. Guth and S.-Y. Pi, Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  51. S. W. Hawking, Phys. Lett. 115B, 295 (1982);

    ADS  Google Scholar 

  52. J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Univ. of Penna. preprint UPR-0202T (1982). See also the “Proceedings of the Nuffield Workshop on the Very Early Universe,” Ref. 23.

    Google Scholar 

  53. E. R. Harrison, Phys. Rev. D 1, 2726 (1970).

    Article  ADS  Google Scholar 

  54. Ya. B. Zeldovich, Mon. Not. R. Astr. Soc. 160, 1P (1972).

    ADS  Google Scholar 

  55. See the contributions by P. J. Steinhardt and by M. S. Turner in the “Proceedings of the Nuffield Workshop on the Very Early Universe, Ref. 23.

    Google Scholar 

  56. Since the Magnetic Monopole Workshop, A. S. Goldhaber, S.-Y. Pi and I have begun to think about the production of magnetic monopoles during the early stages of inflation, while ϕ ≈ x. At this time magnetic monopoles are relatively light, and can be produced abundantly. These monopoles are then diluted by the subsequent expansion, but we think that a conceivably observable flux of monopoles could remain. (The possibility that monopoles could be produced in this way was suggested by M. S. Turner.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Guth, A.H. (1983). Reducing the Monopole Abundance. In: Carrigan, R.A., Trower, W.P. (eds) Magnetic Monopoles. NATO Advanced Science Institutes Series, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7370-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7370-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7372-2

  • Online ISBN: 978-1-4615-7370-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics