Skip to main content

Conformation

  • Chapter
  • 306 Accesses

Abstract

The expression “conformation” is always used with respect to a single bond; such conformations may also be called microconformations. There are a great many microconformations of this kind in a macromolecule, such that the macromolecule adopts an overall macroconformation. The macroconformation determines the shape of the molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Sections 4.1–4.3. Conformation

  • M. V. Volkenstein, Configurational Statistics of Polymeric Chains, USSR Academy of Science, Moscow, 1959; Interscience, New York, 1963.

    Google Scholar 

  • T. M. Birshtein and O. B. Ptitsyn, Conformations of Macromolecules, Interscience, New York, 1966.

    Google Scholar 

  • F.A. Bovey, Polymer Conformation and Configuration, Academic Press, New York, 1969.

    Google Scholar 

  • P. J. Flory, Statistical Mechanics of Chain Molecules, Wiley-Interscience, New York, 1969.

    Google Scholar 

  • G.G. Lowry, Markov Chains and Monte Carlo Calculations in Polymer Science, Marcel Dekker, New York, 1970.

    Google Scholar 

  • A. J. Hopfinger, Conformational Properties of Macromolecules, Academic Press, New York, 1973.

    Google Scholar 

Sections 4.4 and 4.5. Macromolecular Shape

  • H. Sund and K. Weber, The quartenary structure of proteins, Angew. Chem. Int. Ed. 5, 231 (1966).

    Article  CAS  Google Scholar 

  • G.N. Ramachandran, Conformation of Biopolymers, 2 vols., Academic Press, London, 1967.

    Google Scholar 

  • R. E. Dickerson and I. Geis, The Structure and Action of Proteins, Harper and Row, New York, 1969.

    Google Scholar 

  • V. N. Tsvetkov, V. Ye. Eskin, and S. Ya. Frenkel, Structure of Macromolecules in Solution, Butterworths, London, 1970.

    Google Scholar 

  • H.Yamakawa, Modern Theory of Polymer Solutions, Harper and Row, New York, 1971.

    Google Scholar 

  • H. Yamakawa, Polymer statistical mechanics, Ann. Rev. Phys. Chem. 25, 179 (1974).

    Article  Google Scholar 

  • H. Morawetz, Macromolecules in Solution, second ed., Wiley-Interscience, New York, 1975.

    Google Scholar 

  • D. A. Rees and E. J. Welsh, Secondary and tertiary structure of polysaccharides in solutions and gels, Angew. Chem. Int. Ed. Eng. 16, 214–223 (1977).

    Article  Google Scholar 

  • K. Sole, Shape of flexible polymer molecules, Polym. News 4, 67–74 (1977).

    Google Scholar 

  • R. Jenkins and R. S. Porter, Unperturbed dimensions of stereoregular polymers, Adv. Polym. Sci. 36, 1 (1980).

    Article  CAS  Google Scholar 

Section 4.6. Optical Activity

  • C. Djerassi, Optical Rotatory Dispersion, McGraw-Hill, New York, 1960.

    Google Scholar 

  • L. Velluz, M. Legrand, and M. Grosjean, Optical Circular Dichroism, Verlag Chemie, Weinheim, 1965.

    Google Scholar 

  • B. Jirgensons, Optical Rotatory Dispersion of Proteins and Other Macromolecules, Springer, Berlin, 1969.

    Google Scholar 

  • P. Pino, F. Ciardelli, and N. Zandomeneghi, Optical activity in steroregular synthetic polymers, Ann. Rev. Phys. Chem. 21, 561 (1970).

    Article  CAS  Google Scholar 

  • P. Crabbé, ORD and CD in Chemistry and Biochemistry, Academic Press, New York, 1972. E. Sélégny (ed.). Optically Active Polymers (= Vol. 5, Charged and Reactive Polymers), Reidel, Dordrecht, 1979.

    Google Scholar 

Section 4.7. Conformational Transitions

  • D. Poland and H. A. Scheraga, Theory of Helix-Coil Transitions in Biopolymers—Statistical Mechanical Theory of Order-Disorder Transitions in Biological Macromolecules, Academic Press, New York, 1970.

    Google Scholar 

  • C.Sadron, (ed.). Dynamic Aspects of Conformation Changes in Biological Macromolecules, Reidel, Dordrecht, 1973.

    Google Scholar 

  • R. Cerf, Cooperative conformational kinetics of synthetic and biological chain molecules. Adv. Chem. Phys. 33, 73 (1975).

    Article  CAS  Google Scholar 

  • A. Teramoto and H. Fujita, Conformation-dependent properties of synthetic polypepides in the helix-coil transition region. Adv. Polym. Sci. 18, 65 (1975).

    Article  CAS  Google Scholar 

  • A. Teramoto and H. Fujita, Statistical thermodynamic analysis of helix-coil transitions in polypeptides, J. Macromol. Sci.— Rev. Macromol Chem. C15, 165–278 (1976).

    Article  CAS  Google Scholar 

  • D.Poland, Cooperative Equilibria in Physical Biochemistry, Oxford University Press, Oxford, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Elias, HG. (1984). Conformation. In: Macromolecules · 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7367-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7367-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7369-2

  • Online ISBN: 978-1-4615-7367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics