Skip to main content

Transport and Quantum Statistics of Excitons in Cu2O

  • Chapter
Laser Optics of Condensed Matter
  • 218 Accesses

Abstract

Since the pioneering studies of Gross and others in the 1950fs, the semiconductor cuprous oxide (Cu2O) has provided a classic example of a Wannier exciton. Spectroscopic studies such as optical absorption, luminescence and two-photon absorption have established the hydrogen-like energy levels and the existence of ortho- and paraexcitons. Also, recent experiments have indicated that Cu2O is a good candidate for demonstrating Bose-Einstein condensation of excitons. Towards this end, we have conducted a variety of experiments to determine the thermodynamic and transport properties of ortho- and paraexcitons in Cu2O. In naturally grown crystals, the paraexciton lifetime exceeds a microsecond, and its diffusivity and drift mobility can be measured by time-resolved luminescence imaging- In this way, the low-temperature regime of deformation-potential scattering has been measured. Under intense photoexcitation, the orthoexcitons display quantum statistics. Time-resolved spectroscopy and imaging reveals the evolution of the basic thermodynamic parameters: density, temperature and volume of the excitonic gas. The conditions of quantum saturation have been reached and the system is observed to follow the phase boundary for Bose-Einstein condensation, n = CT3/2 , for over an order-of-magnitude in gas density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mysyrowicz, D. Hulin, and A. Antonetti, Phys. Rev. Lett. 43:1123 (1979).

    Article  ADS  Google Scholar 

  2. F. I. Kreingold and V. L. Makarov, Fiz. Tekh. Poloprovodn 8:1475 (1974) Spy. Phys. Semicond. 8:962 (1975)].

    Google Scholar 

  3. A. Mysyrowicz, D. P. Trauernicht, J. P. Wolfe, H.-R. Trebin, Phys. Rev. B 27:2562 (1983).

    Article  ADS  Google Scholar 

  4. H.-R. Trebin, H. Z. Cummins, and J. L. Birman, Phys. Rev. B 23:597 (1981).

    Article  ADS  Google Scholar 

  5. R. G. Waters, F. H. Pollak, R. H. Bruce, and H. Z. Cummins, Phys. Rev. B 21:1665 (1980).

    Article  ADS  Google Scholar 

  6. M. A. Tamor and J..P. Wolfe, Phys. Rev. Lett., 44:1703 (1980); Phys. Rev. B 26:5743 (1982).

    Article  ADS  Google Scholar 

  7. D. P. Trauernicht and J. P. Wolfe, Phys. Rev. B 33:8506 (1986).

    Article  ADS  Google Scholar 

  8. P. Y. Yu and Y. R. Shen, Phys. Rev. Lett. 32, 939 (1974).

    Article  ADS  Google Scholar 

  9. J. Bardeen and W. Shockley, Phys. Rev. 80:72 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. D. Snoke, J. P. Wolfe and A. Mysyrowicz, Phys. Rev. Lett. 59:827 (1987).

    Article  ADS  Google Scholar 

  11. V. B. Timofeev et al., p. 327 in: “Proceedings of the Sixteenth International Conference on Physics of Semiconductors, Montpellier, France, 1982,” M. Averous, ed., North-Holland, Amsterdam (1983).

    Google Scholar 

  12. N. Peyghambarian, L. L. Chase, and A. Mysyrowicz, Phys. Rev. B27:2325 (1983).

    Article  ADS  Google Scholar 

  13. N. Hulin, A. Mysyrowicz, and C. Benoit a la Guillaume, Phys. Rev. Lett. 45:1970 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Wolfe, J.P. (1988). Transport and Quantum Statistics of Excitons in Cu2O. In: Birman, J.L., Cummins, H.Z., Kaplyanskii, A.A. (eds) Laser Optics of Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7341-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7341-8_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7343-2

  • Online ISBN: 978-1-4615-7341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics