Skip to main content

High Density Transition Laser Driven Implosions

  • Chapter
Laser Interaction and Related Plasma Phenomena
  • 279 Accesses

Abstract

In the scheme of inertial confinement fusion, the conditions for fuel ignition have to be economically achieved by applying an isentropic compression. For laser fusion, required final densities range between 10 to 10 times the liquid fuel density /1/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Nuckolls, L. Wood, A. Thissen, G. Zimmerman Nature 239, 139 (1972).

    Article  ADS  Google Scholar 

  2. P.M. Campbell, G. Charatis, G.R. Montry Phys. Rev. Lett. 34, 74 (1975).

    Article  ADS  Google Scholar 

  3. G.H. Mc Call, T.H. Tan, A.H. Williams LAUR 75 (1972).

    Google Scholar 

  4. E.K. Storm et al. Phys. Rev. Lett 40, 1570 (1978).

    Article  ADS  Google Scholar 

  5. A. Bekiarian et al. AIEA Vienna, 65 (1979).

    Google Scholar 

  6. B. Yaakobi et al. Phys. Rev. A 19, 1247 (1979).

    Article  ADS  Google Scholar 

  7. C. Bayer et al. Laser Interaction and Related Plasma Phenomena, Vol. 5, 595 (PPC 1981).

    Google Scholar 

  8. E.K. Storm et al. U.C.R.L. 79, 788 (1977).

    Google Scholar 

  9. D. Giovanelli, C.W. Cranfill LA 7218 (1978).

    Google Scholar 

  10. M.D. Rosen and J.M. Nuckolls Phys. of Fluids, 22, 1893 (1979).

    Google Scholar 

  11. B. Ahlborn and M.H. Key Plasma Physics 23, 435 (1981).

    Article  ADS  Google Scholar 

  12. E. Fabre et al. Entropie 89–90, 47; (1979).

    Google Scholar 

  13. D.C. Slater et al. Phys. Rev. Lett. 46, 1199 (1981).

    Article  ADS  Google Scholar 

  14. H. Nishimura et al. Phys. Rev. A 23, 2011 (1981).

    Article  ADS  Google Scholar 

  15. B. Yaakobi et al. Optics Communications 39, 175 (1981).

    Article  ADS  Google Scholar 

  16. J.D. Hares et al. Phys. Rev. Lett. 42, 1218 (1979).

    Article  ADS  Google Scholar 

  17. J.D. Hares, J.D. Kilkenny J. Applied Physics, 6420 (1981).

    Google Scholar 

  18. F. Amiranoff,R. Fabro, E. Fabre, C. Garban-Labaune, M. Weinfeld Soumis à Phys. Rev. Lett. (1982).

    Google Scholar 

  19. F. Amiranoff et al. XVth E.C.L.I.M. Schliersee, 1982.

    Google Scholar 

  20. D.W. Forslund, J.U. Brackbill LA.UR 82, 1063.

    Google Scholar 

  21. R. Fabro, P. Mora Phys. Rev. Lett., Vol. 90A, 48 (1982).

    ADS  Google Scholar 

  22. C. Bayer et al. Anomalous Absorption Conference, Santa Fe, (1982).

    Google Scholar 

  23. J. Launspach, D. Billon, M. Decroisette, D. Meynial Optics Communications 38, 407 (1980).

    Article  ADS  Google Scholar 

  24. D. Billon, J. Launspach, D. Galmiche and D. Meynial X-ray shadowgraphy studies in laser experiments VIth International Workshop on Laser Interaction and Related Plasma Phenomena, Monterey 1982

    Google Scholar 

  25. E.M. Campbell, W.M. Ploeger, P.H. Lee and S.M. Lane Appl. Phys. Lett 36, (1980).

    Google Scholar 

  26. D. Billon et al. Laser Interaction and Related Plasma Phenomena, Vol. 4, (PPC 1977).

    Google Scholar 

  27. N.G. Basov et al. Sov. Phys. JETP 51, 212 (1980).

    ADS  Google Scholar 

  28. A.S. Shikanov The Journal of Soviet -aser Research, 1, 128 (1980).

    Article  Google Scholar 

  29. J.M. Auerbach et al. Phys. Rev. Lett. 44, 1672 (1980).

    Article  ADS  Google Scholar 

  30. M.H. key et al. Phys. Rev. Lett. 45, 1801 (1980).

    Article  ADS  Google Scholar 

  31. H. Azechi et al. Technology Reports of the Osaka University, Vol. 30, 157 (1980).

    ADS  Google Scholar 

  32. M. Bernard et al. A.P.S. Annual Meeting, Atlanta (1977).

    Google Scholar 

  33. Note C.E.A. n° 2163 (1980).

    Google Scholar 

  34. Note C.E.A. n° 2230 (1981).

    Google Scholar 

  35. L. Spitzer Physics of fully ionized gases (Wiley-Interscience N.Y. 1967).

    Google Scholar 

  36. K.A. Bruckner, R.S. Janda Nuclear Fusion, 17, n° 6, 1265 (1977).

    Article  ADS  Google Scholar 

  37. B.H. Ripin et al. Physics of Fluids, 23, 1012 (1980).

    Article  ADS  Google Scholar 

  38. J.M. Dufour, D. Galmiche, B. Sitt, Investigations of hydrodynamic stability of high aspect ratio targets in laser experiments VIth International Workshop on Laser Interaction and Related Plasma Phenomena.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Bayer, C., Bernard, M., Decroisette, M., Juraszek, D., Meynial, D. (1984). High Density Transition Laser Driven Implosions. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics