Skip to main content

Thermal Transport Measurements in 1.05 µm Laser Irradiation of Spherical Targets

  • Chapter

Abstract

Transport and implosion experiments have been conducted on the OMEGA, 24-beam, uniform-irradiation facility that may result in significant revisions in our current understanding of thermal transport in laser-irradiated targets:

  1. (a)

    Thermal transport in spherical irradiation cannot be described in terms of a simple flux-limited inhibition model.

  2. (b)

    Classical transport is found to be inadequate also: the heat front has a different shape (falling more gradually) than that predicted by either classical or flux-limited transport models for any level of inhibition.

  3. (c)

    A multi-group (non-local) treatment of transport in which faster than the average thermal electrons penetrate deeper, results in a temperature profile which is in qualitative agreement with the present measurements.

  4. (d)

    The enhanced inward penetration studied here appears to supercede preheat by resonance-absorption electrons, but to have a weaker dependence on the irradiance than is the case for the latter mechanism; this would reduce the incentive to go to lower irradiance in order to reduce preheat.

  5. (e)

    Target implosion experiments show higher core temperatures than predicted by an inhibited flux model and lower densities than predicted by an uninhibited flux model.

  6. (f)

    Single-beam plane-target experiments appear to show flux inhibition only because of some 2D effects; these may be subtler than simple lateral heat transport.

  7. (g)

    There are indications that in short wavelength irradiation the higher collisionality suppresses the deeper penetration measured here. This would mean that for the same absorbed irradiance the shorter wavelength laser produces a higher pressure gradient (and efficiency).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.J. Goldsack, J.D. Kilkenny, B.J. MacGowan, P.F. Cunningham, C.L.S. Lewis, M.H. Key, and P.T. Rumsby, Phys. Fluids 25:1634 (1982).

    Article  ADS  Google Scholar 

  2. B. Yaakobi, T. Boehly, P. Bourke, Y. Conturie, R.S. Craxton, J. Delettrez, J.M. Forsyth, R.D. Frankel, L.M. Goldman, R.L. McCrory, M.C. Richardson, W. Seka, D. Shvarts, and J.M. Soures, Optics Comm. 39:175 (1981).

    Article  ADS  Google Scholar 

  3. Crystals calibrated by A.J. Burek, National Bureau of Standards, Gaithersburg, MD 20760. Our film calibration results agree (except for very high exposures) with published data: R.F. Benjamin, P.B. Lyons, and R.H. Day, App. Optics 16:393 (1977),

    Article  ADS  Google Scholar 

  4. Crystals calibrated by A.J. Burek, National Bureau of Standards, Gaithersburg, MD 20760. Our film calibration results agree (except for very high exposures) with published data: CM. Dozier, D.B. Brown, L.S. Birks, P.B. Lyons, and R.F. Benjamin, J. App. Phys. 47:3732 (1976).

    Article  ADS  Google Scholar 

  5. Earlier versions of LILAC are described in Laboratory for Laser Energetics Reports No. 16 (1973) and No. 36 (1976).

    Google Scholar 

  6. R.C. Malone, R.L. McCrory, and R.L. Morse, Phys. Rev. Lett. 34:721 (1975).

    Article  ADS  Google Scholar 

  7. M.D. Rosen, D.W. Phillion, V.C. Rupert, W.C. Mead, W.L. Kruer, J.J. Thompson, H.N. Korublum, V.W. Slivinsky, G.J. Caporaso, M.J. Boyle, and K.G. Tirsell, Phys. Fluids 22:2020 (1979).

    Article  ADS  Google Scholar 

  8. F.C. Young, R.R. Whitlock, R. Decoste, B.H. Ripin, D.J. Nagel, J.A. Stamper, J.M. McMahon, and S.E. Bodner, App. Phys. Lett. 30:45 (1977).

    Article  ADS  Google Scholar 

  9. R. Fabbro, E. Fabre, F. Amiranoff, C. Garban-Labaune, J. Virmont, M. Weinfeld, and C.E. Max, Phys. Rev. A26:2289 (1982).

    ADS  Google Scholar 

  10. D. Shvarts, J. Delettrez, R.L. McCrory, and C.P. Verdon, Phys. Rev. Lett. 47:247 (1981).

    Article  ADS  Google Scholar 

  11. B. Yaakobi, J. Delettrez, L.M. Goldman, R.L. McCrory, W. Seka, and J.M. Soures, Optics Comm. 41:355 (1982).

    Article  ADS  Google Scholar 

  12. Annual Report, Rutherford Laboratory, RL-81–040, Chap. 4.3 (1981).

    Google Scholar 

  13. The energy fraction which reaches the critical surface by tunneling and is converted to fast electrons is calculated by W.L. Kruer, Lawrence Livermore Laboratory Report UCRL-81896 (1978).

    Google Scholar 

  14. K. Estabrook and W.L. Kruer, Phys. Rev. Lett. 40:42 (1978).

    Article  ADS  Google Scholar 

  15. Annual Report, Rutherford Laboratory, RL-81–040, p. 4.13 (1981).

    Google Scholar 

  16. R.J. Mason, Phys. Rev. Lett. 47:652 (1981).

    Article  ADS  Google Scholar 

  17. A.R. Bell, R.G. Evans, and D.J. Nicholas, Phys. Rev. Lett. 46:247 (1981).

    Article  ADS  Google Scholar 

  18. “Thermal electron heat front calculations under laser-matter interaction conditions,” D. Shvarts, J. Delettrez, and R.L. McCrory (submitted for publication).

    Google Scholar 

  19. Annual Report, Rutherford Laboratory, RL-81–040, Chap. 4.4 (1981).

    Google Scholar 

  20. J. Murdoch, J.D. Kilkenny, D.R. Gray, and W.T. Toner, Phys. Fluids 24:2107 (1981).

    Article  ADS  Google Scholar 

  21. D.W. Forslund and J.U. Brackbill, Phys. Rev. Lett. 48:1614 (1982).

    Article  ADS  Google Scholar 

  22. J.G. Lunney and J.F. Seely, J. Phys. B15, L121 (1982).

    ADS  Google Scholar 

  23. P.C. Kepple and H.R. Griem, NRL Memorandum Report 3634 (1978).

    Google Scholar 

  24. B. Yaakobi, D.M. Villeneuve, M.C. Richardson, J.M. Soures, R. Hutchison, and S. Letzring, Optics Comm. 43:343 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Yaakobi, B. et al. (1984). Thermal Transport Measurements in 1.05 µm Laser Irradiation of Spherical Targets. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics