Skip to main content

Investigation of Hydrodynamic Stability of High Aspect Ratio Targets in Laser Implosion Experiments

  • Chapter

Abstract

With the OCTAL laser facility, spherical implosions have been performed with large aspect ratio targets (R/ΔR up to 240), up to 300 µm in diameter, filled with equimolar DT at different pressures (1–20 bars). The one- dimensional simulations seem to fit rather well with all the experimental results (emission and X-ray shadowgraphy) except for the neutron yield. Hydrodynamics of the implosion and shock collapse time appear to be drastically sensitive to the preheat energy level. In particular, the reflected outgoing shock gives rise to an important perturbation at the pusher-fuel interface.

The stability is investigated by studying the growth of perturbations due to geometrical and illumination defects in the linear phase with the perturbation code PERTUS, The formulation used is based on a decomposition into spherical harmonics of the first-order flow quantities, whose evolution is computed independently for each mode.

The low and intermediate harmonic order (ℓ<100) mode growth is such that the linear phase assumption is no longer valid well before the completion of the implosion. A matching of the numerical results to the experimental data is attempted and points to the presence between the core and the shell of a mixing layer which could cause a significant reduction of the neutron yield.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. V. Afanas’ev et al., J.E.T.P. Lett. 21 (2), 68 (1975).

    MathSciNet  ADS  Google Scholar 

  2. D. Billon, P.A. Holstein, J. Launspach, C. Patou, J.M. Reisse, D. Schirmann, in Laser Interaction and Related Plasma Phenomena, Plenum Press, New-York, Vol. 4A, p. 503–534 (1977).

    Book  Google Scholar 

  3. M.H. Key, P.T. Rumsby, R.G. Evans, CL.S. Lewis, J.M. Ward, R.L. Cooke, Phys. Rev. Lett. 45 (22), 1801 (1980).

    Article  ADS  Google Scholar 

  4. D.M. Villeneuve et al., 12th Annual Anomalous Absorption Conf. May 10–13, 1982, paper B-4 ; M.C. Richardson et al., same Conf., paper D-6.

    Google Scholar 

  5. J.D. Lindl, Lawrence Livermore Laboratory Report UCRL 79735 (1977, unpublished) ;

    Google Scholar 

  6. J.H. Nuckolls, R.O. Bangerter, J.D. Lindl, W.C. Mead, Y.L. Pan, Lawrence Livermore Laboratory Report UCRL 79373 (1977), unpublished).

    Google Scholar 

  7. Yu. F. Afanas’ev, N.G. Basov, E.G. Gamalii, O.N. Krokhin, V.B. Rozanov, J.E.T.P. Lett. 23 (11), 566 (1976).

    ADS  Google Scholar 

  8. D. Galmiche, B. Sitt, in Rapport des Activités Laser 1980, Note CEA N-2230, p. 153 (unpublished).

    Google Scholar 

  9. C. Bayer et al. Bull. A.P.S. 26 (7), 944 (1981).

    Google Scholar 

  10. D. Billon, J. Launspach, D. Galmiche, D. Meynial, this Workshop.

    Google Scholar 

  11. E.K. Storm et al., Phys. Rev. Lett. 40 (24), 1570 (1978).

    Article  ADS  Google Scholar 

  12. G. Birkhoff, Quart. Appl. Math. 13 (4), 451 (1956).

    MathSciNet  MATH  Google Scholar 

  13. M.S. Plesset, Journ. Appl. Phys. 25 (1), 96 (1954).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. L. Brun, B. Sitt, Internal Report (1975, unpublished);

    Google Scholar 

  15. L. Brun et al. in Laser Interaction and Related Plasma Phenomena, Plenum Press, New-York, Vol. 4B, p. 1059–1080 (1977); for a more recent presentation,

    Book  Google Scholar 

  16. see also L. Brun, B. Sitt, CEA Report R-5012 (1979, unpublished).

    Google Scholar 

  17. K.K. Lee, R. Hopkins, R.L. Mc Crory, Univ. of Rochester LLE Report No. 115 (1981).

    Google Scholar 

  18. Jo. Gay, J. Gay, unpublished work (1982).

    Google Scholar 

  19. B. Sitt, N. Wilke, CEA Report R-5054 (1980, unpublished).

    Google Scholar 

  20. B. Sitt, Bull. A.P.S. 24 (4), 721 (1979).

    Google Scholar 

  21. B. Sitt, C.R. Acad. Sci. Paris 291 B, 243 (1980).

    MathSciNet  Google Scholar 

  22. H. Lamb, Hydrodynamics, Dover 7th Ed., p. 470–372 (1975).

    Google Scholar 

  23. G.S. Fraley, Phys. Fluids 19 (10), 1495 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Dufour, J.M., Galmiche, D., Sitt, B. (1984). Investigation of Hydrodynamic Stability of High Aspect Ratio Targets in Laser Implosion Experiments. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics