Skip to main content

High Frequency Instabilities in Underdense Plasmas Produced by a 0.35 µm Laser Beam

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

High frequency parametric instabilities excited when an intense electromagnetic pulse (ω0, k 0) propagates through an underdense plasma are currently under active investigation.1,2 Energy and momentum conservation give

$$ {\omega _{o}} = {\omega _{1}} + {\omega _{2}}$$

and,

$$ {\omega _{o}} = {\omega _{1}} + {\omega _{2}} $$

where at least one of the decay waves is an electron plasma wave (epw) with the dispersion relation

$$ {\underline k _{o}} = {\underline k _{1}} + {\underline k _{2}} $$

In the underdense corona of a laser fusion pellet there are two such instabilities of particular concern; the two-plasmon decay (2ωp) instability and the stimulated Raman scattering (SRS) instability. This is because the epw’s associated with these instabilities can have phase velocities on the order of the speed of light and therefore produce very energetic electrons when they damp.3 Since such electrons can preheat the fuel in a laser fusion pellet before significant compression the 2ωp and SRS instabilities are of particular concern. In the 2ωp decay instability, the two decay waves are both epw’s so that frequency matching can occur only if ω0 ≃ 2ωp. This instability can therefore be expected to occur only near the quarter-critical layer of an inhomogeneous plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. S. Liu, M. N. Rosenbluth and R. B. White, Phys. Fluids 17, 1211 (1974).

    Article  ADS  Google Scholar 

  2. J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu and M. N. Rosenbluth, Phys. Fluids 17, 778 (1974).

    Article  ADS  Google Scholar 

  3. D. W. Forslund, J. M. Kindel and E. L. Lindman, Phys. Fluids, 18, 1002 (1975).

    Article  ADS  Google Scholar 

  4. W. L. Kruer, K. Estabrook, B. F. Lansinski and A. B. Langdon, Phys. Fluids 23, 1326 (1980).

    Article  ADS  Google Scholar 

  5. A. B. Langdon, B. F. Lasinski and W. L. Kruer, Phys. Rev. Lett. 43, 133 (1979).

    Article  ADS  Google Scholar 

  6. E. A. Jackson, Phys. Rev. 153, 235 (1967).

    Article  ADS  Google Scholar 

  7. R. G. Watt, R. D. Brooks and Z. A, Pietryzik, Phys. Rev. Lett. 41, 170 (1978).

    Article  ADS  Google Scholar 

  8. D. W. Phillion, D. L. Banner, E. M. Campbell, R. E. Turner and K. G. Estabrook, Phys. Fluids, 25, 1434 (1982).

    Article  ADS  Google Scholar 

  9. A. A. Offenberger, R. Fedosejevs, W. Tighe and W. Rozmus, Phys. Rev. Lett, 49, 371 (1982).

    Article  ADS  Google Scholar 

  10. D. W. Phillion, E. M. Campbell, K. G. Estabrook, G. E. Phillips and F. Ze, Phys. Rev. Letts. 49, 1405 (1982).

    Article  ADS  Google Scholar 

  11. K. Tanaka, L. M. Goldman, W. Seka, M. C. Richardson, J. M. Soures and E. A. Williams, Phys. Rev. Letts. 48, 1179 (1982).

    Article  ADS  Google Scholar 

  12. H. A. Baldis, J. C. Samson and P. B. Corkum, Phys. Rev. Lett. 41, 1719 (1978).

    Article  ADS  Google Scholar 

  13. H. A. Baldis and C. Walsh, Phys. Rev. Lett. 47, 1658 (1981).

    Article  ADS  Google Scholar 

  14. N.A. Ebrahim, H. A. Baldis, C. Joshi and R. Benesch, Phys. Rev. Lett. 45, 1179 (1980).

    Article  ADS  Google Scholar 

  15. N. A. Ebrahim and C. Joshi, Phys. Fluids 24, 138 (1981).

    Article  ADS  Google Scholar 

  16. N. A. Ebrahim, C. Joshi and H. A. Baldis, Phys. Letts. A. 84A, 253 (1981).

    Article  ADS  Google Scholar 

  17. C. Joshi, T. Tajima, J. M. Dawson, H. A. Baldis and N. A. Ebrahim, Phys. Rev. Lett. 47, 1285 (1981).

    Article  ADS  Google Scholar 

  18. K. Estabrook, W. L. Kruer, D. W. Phillion, R. E. Turner and E. M. Campbell, Proceeding of the U. S. — Japan Seminar on Theory and Application of Multiphy-Ionized Plasmas Produced by Laser and Particle Beams, Nara, Japan, May 3–7 (1982). Ed. C. Yamanaka.

    Google Scholar 

  19. R. E. Turner, D. W. Phillion, E. M. Campbell and K. G. Estabrook, Lawrence Livermore Laboratory Report UCRL-87516 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Figueroa, H., Joshi, C., Clayton, C.E., Azechi, H., Ebrahim, N.A., Estabrook, K. (1984). High Frequency Instabilities in Underdense Plasmas Produced by a 0.35 µm Laser Beam. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics