Skip to main content

Applications of X-Rays from Laser Produced Plasmas

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

Progress in the development of high power lasers during the past decade has opened the door to many new areas of applications. The best known, of course, is the possibility of achieving controlled thermonuclear fusion by means of laser heated plasma. However, several applications of laser plasma x-rays have more attractive current prospects. There are many points of similarity between the x-ray and fusion problem. Both, for example, require laser heating of plasmas to the kilovolt regime. But there are significant differences. The x-ray work usually involves heating of high Z materials, while the fusionable materials are low Z. Most of the x-ray applications do not require target compressions, and can use simple planar targets. Additionally, neither the plasma temperature nor the laser efficiency requirements are as severe. The main effect of these differences is that the lasers for x-ray production can be much smaller and less expensive than lasers for fusion. We have recently demonstrated that x-rays can be efficiently generated with mode locked laser pulses of several hundred mj1. The characteristics that differentiate a laser plasma x-ray source from conventional sources are:

  1. (1)

    The x-ray spectrum comes from highly stripped species and is predominantly L line radiation or continuum in the kilovolt regime. Heliumlike K lines are also obtainable.

  2. (2)

    The pulse width is very short in the ~0.1 to 10 ns range.

  3. (3)

    The source size is very small, ~10–200 µm diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Epstein, R. E. Schwerzel, and B. E. Campbell, “Laser Plasma X-rays for Laboratory EXAFS.” CLEO ′82, p. 180, Technical Digest,. Phoenix, Arizona (April 1982).

    Google Scholar 

  2. P. L. Mallozzi, H. M. Epstein, R. G. Jung, D. C. Applebaum, B. P. Fairand, and W. J. Gallagher, X-ray Emission from Laser-Generated Plasmas, in: “Fundamental and Applied Laser Physics: Proceedings of the Esfahan Symposium,” M. S. Feld, A. Javan, and N. A. Warnick, eds., John Wiler & Sons, Inc. (1973).

    Google Scholar 

  3. J. W. Bond Jr., K. M. Watson, and J. A. Welch Jr., “Atomic Theory of Gas Dynamics”, Addison-Wesley, Inc., Reading, MA (1965).

    Google Scholar 

  4. R.W.P. McWhirter, Chapter 5, in.: “Plasma Diagnostic Techniques”, R. H. Huddlestone and S. L. Leonard, eds., Academic Press, New York, NY (1965).

    Google Scholar 

  5. C. Kunz, “Synchrotron Radiation, Techniques and Applications”, p. 12, Springer-Verlag, Berlin, Heidelberg, NY (1979).

    Google Scholar 

  6. P. J. Mallozzi, H. M. Epstein, and R. E. Schwerzel, Laser-Produced Plasmas as an Alternative X-ray Source for Sychrotron Radiation Research and for Microradiography, Adv. X-Ray Anal., 22: 267–279 (1979) (edited by G. J. McCarthy, et al.)

    Google Scholar 

  7. D. E. Sayers, F. W. Lytle, E. A. Stern, Adv. X-Ray Anal., 13:248 (1970);

    Article  Google Scholar 

  8. F. W. Lytle, D. E. Sayers, E. A. Stern, Phys. Rev., B11: 4825 (1975)

    ADS  Google Scholar 

  9. E. A. Stern, D. E. Sayers, F. W. Lytle, ibid, p. 4836.

    ADS  Google Scholar 

  10. S. P. Cramer and K. O. Hodgson, Prog. Inorg. Chem., 25:1 (1979).

    Article  Google Scholar 

  11. C. A. Ashley and S. Doniach, Phys. Rev., Bll:1279 (1975).

    ADS  Google Scholar 

  12. P. J. Mallozzi, R. E. Schwerzel, H. M. Epstein, and B. E. Campbell, Laser-EXAFS: Fast Extended X-ray Absorption Fine Structure Spectroscopy with a Single Pulse of Laser Produced X-rays, Science, 206:353–355 (October 1979).

    Article  ADS  Google Scholar 

  13. P. J. Mallozzi, R. E. Schweezel, H. M. Epstein, and B. E. Campbell, Fast EXAFS Spectroscopy with a Laser-Produced X-ray Pulse, Phys. Rev., A23(2):824–828 (1981).

    ADS  Google Scholar 

  14. H. M. Epstein, R. E. Schwerzel, P. J. Mallozzi, and B. E. Campbell, Fast EXAFS for Analysis of Transient Species, J. Am. Chem. Soc. (to be published).

    Google Scholar 

  15. P. J. Feibelman and M. L. Knotek, Reinterpretation of Electron-Stimulated Desorption from Chemisorption Systems, Phys. Rev., B18(12):6537–6539 (December 1978).

    Google Scholar 

  16. E. Spiller and R. Feder, X-ray Lithography, Chapter 3, in: “X-ray Optics”, H. J. Queisser, ed., Springer-Verlag (1977).

    Google Scholar 

  17. H. M. Epstein, K. M. Duke, and G. W. Wharton, Laser-Generated X-ray Microradiography Applied to Entomology, Trans. Amer. Micros. Soc, 98(3):427–436 (1979).

    Article  Google Scholar 

  18. H. I. Smith, D. L. Spears, and S. E. Bernacki, X-ray Lithography: A Complementary Technique to Electron Beam Lithography, J. Vac. Sci. Technol., 10:913 (Nov/Dec 1973).

    Article  ADS  Google Scholar 

  19. A. Zacharias, X-ray Lithography Exposure Machines, Solid State Tech., pp 57–59 (August 1981).

    Google Scholar 

  20. J. R. Maldonado, M. E. Poulsen, T. E. Saunders, F. Vratny, and A. Zacharias, X-ray Lithography Source Using a Stationary Solid Pd Target, J. Vac. Sci. Technol., 16:1942 (Nov/Dec 1979).

    Article  ADS  Google Scholar 

  21. D. Maydan, G. A. Coquin, H. J. Levinstein, A. K. Sinha, and D. K. Wang, Boron Nitride Mask Structure for X-ray Lithography, J. Vac. Sci. Technol., 16:1959 (Nov/Dec 1979).

    Article  ADS  Google Scholar 

  22. G. N. Taylor and T. M. Wolf, Plasma-Developed X-ray Resists, J. Electrochem. Sci., 127:2665 (Dec 1980).

    Article  Google Scholar 

  23. P. Duncumb, X-ray Microscopy and Microradiography, Academic Press, New York, NY (1957).

    Google Scholar 

  24. H. M. Epstein and B. E. Campbell, “Microlithography of Integrated Circuits with Laser Plasma X-ray Sources”, CLEO ′82, p. 182, Technical Digest, Phoenix, Arizona (April 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Epstein, H.M., Schwerzel, R.L., Campbell, B.E. (1984). Applications of X-Rays from Laser Produced Plasmas. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics