Skip to main content

Restorative Growth in Mammalian Embryos

  • Chapter

Abstract

The preceding three quotations encompass the subject of this chapter but do not define it. Far from being a review of regeneration, compensatory growth, and catch-up growth, it is intended to draw attention to an issue that has received scant direct attention, namely the ability of the mammalian embryo to repair or correct damage that has been inflicted upon it. I also hope to indicate possible ways in which such an ability may obscure the site and extent of initial damage and impinge upon the teratogenic outcome of that damage.

What stands out is the large discrepancy between the enormous destruction of differentiating cells in these early embryos and the resultant very slight malformation that occurs in some stages. This regenerative capacity of the mammalian embryo in the face of injury makes it necessary to revise our previous concept of relating the mechanism of malformation almost entirely to destruction of building blocks. Injury has, of course, been related to malformation but repair was an unknown factor. (Hicks, 1954a)

A most striking characteristic of the growth of mammals is that it is self-stabilising, or, to take another analogy ‘target seeking.’ . . . Deflect the child from its natural growth trajectory by acute malnutrition or a sudden lack of a hormone, and a restoring force develops so that as soon as the missing food or hormone is supplied again the child catches up towards its original curve. (Tanner, 1963)

Compensatory growth is exhibited by nearly every organ and tissue of the body in response to overwork. There are no tissues (except for teeth) incapable of repairing injuries to themselves, and in some forms considerable feats of regeneration may occur. (Goss, 1978)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, E. D., Gaunt, S. J., and Graham, C. F. 1979. The differentiation of teratocarinoma stem cells is marked by the types of collagen which are synthesized. Cell 17:469–476.

    PubMed  CAS  Google Scholar 

  • Adhami, H., and Noack, W. 1975. Histological effects of mercaptopurine on the fetal rat central nervous system: a light microscope study. Teratology 11:297–311.

    PubMed  CAS  Google Scholar 

  • Alexander, G., and Williams, D. 1971. Heat stress and development of the conceptus in domestic sheep. J. Agr. Sci. 76:53–72.

    Google Scholar 

  • Altman, J. H., Anderson, W. J., and Wright, K. A. 1969a. Reconstitution of the external granular layer of the cerebellar cortex in infant rats after low-level X-irradiation. Anat. Rec. 163:453–472.

    PubMed  CAS  Google Scholar 

  • Altman, J., Anderson, W. J., and Wright, K. A. 1969b. Early effects of X-irradiation of the cerebellum in infant rats: decimation and reconstitution of the external granular layer. Exp. Neurol. 24:196–216.

    PubMed  CAS  Google Scholar 

  • Altman, K. I., Gerber, G. B., and Okada, S. 1970. Radiation Biochemistry, Volume 1, Cells. Academic, New York.

    Google Scholar 

  • Andreoli, J., Rodier, P., and Langman, J. 1973. The influence of a prenatal trauma on formation of Purkinje cells. Am. J. Anat. 137:87–102.

    PubMed  CAS  Google Scholar 

  • Asisi, A., and Merker, J.-J. 1975. Über eine besondere Form von Extremitäten-missbildung bei Ratten nach Gaben von 6-Mercaptopurin am Tag 12 der Schwangerschaft. Arzneimittelforschung 25:1924–1926.

    PubMed  CAS  Google Scholar 

  • Baranov, V. S. 1966. The specificity of the teratogenic effect of aminopterin as compared to other teratogenic agents (in Russian). Byull. Eksp. Biol. Med. 61:77–82.

    CAS  Google Scholar 

  • Barr, M., and Brent, R. L. 1970. The relation of the uterine vasculature to fetal growth and the intrauterine position effect in rats. Teratology 3:251–260.

    PubMed  Google Scholar 

  • Balazs, R., Lewis, P. D., and Patel, A. J. 1979. Nutritional deficiencies and brain development, in: Human Growth, Volume 3, F. Falkner and J. M. Tanner, eds. Plenum, New York, pp. 415–480.

    Google Scholar 

  • Berry, C. L. 1971. Transient inhibition of DNA synthesis by methotrexate, in the rat embryo and foetus. J. Embryol. Exp. Morphol. 26:469–474.

    PubMed  CAS  Google Scholar 

  • Brent, R. L. 1960. The effect of irradiation on the mammalian fetus. Clin. Obstet. Gynecol. 3:928–950.

    Google Scholar 

  • Brent, R. L., and Jensh, R. P. 1967. Intra-uterine growth retardation. Adv. Teratol. 2:139–227.

    Google Scholar 

  • Bryant, S. V. 1970. Regeneration in amphibians and reptiles. Endeavour 29: 12–17.

    PubMed  CAS  Google Scholar 

  • Cahen, R. L. 1966. Experimental and clinical chemoteratogenesis. Adv. Pharmacol. 4:263–349.

    PubMed  CAS  Google Scholar 

  • Cairnie, A. B., Grahn, D., Rayburn, H. B., Williamson, F. S., and Brown, R. J. 1974. Teratogenic and embryolethal effects in mice of fission-spectrum neutrons and X-rays. Teratology 10:133–140.

    PubMed  CAS  Google Scholar 

  • Cheng, D. W., Chang, L. F., and Bairnson, T. A. 1957. Gross observations on developing abnormal embryos induced by maternal vitamin E deficiency. Anat. Rec. 129:167–185.

    PubMed  CAS  Google Scholar 

  • Cleaver, J. E. 1967. Thymidine metabolism and cell kinetics, in: Frontiers of Biology, Volume 6, A. Neuberger and E. L. Tatum, eds. North-Holland, Amsterdam, pp. 1–259.

    Google Scholar 

  • Crowley, K. K., Geelen, J. A. G., and Langman, J. 1978: Repair mechanism in the embryonic spinal cord after a chemical insult. Teratology 17:1–12.

    PubMed  CAS  Google Scholar 

  • DeSesso, J. M. 1979. Cell death and free radicals. A mechanism for hydroxyurea teratogenesis. Med. Hypotheses 5:937–951.

    PubMed  CAS  Google Scholar 

  • DeSesso, J. M. 1981. Comparative ultrastructural alterations in rabbit limb-buds after a teratogenic dose of either hydroxyurea or methotrexate. Teratology 23:197–215.

    PubMed  CAS  Google Scholar 

  • DeSesso, J. M., and Jordan, R. L. 1977. Drug-induced limb dysplasias in fetal rabbits. Teratology 15:199–211.

    PubMed  CAS  Google Scholar 

  • Deuchar, E. M. 1976. Regeneration of amputated limb-buds in early rat embryos. J. Embryol. Exp. Morphol. 35:345–354.

    PubMed  CAS  Google Scholar 

  • Diewert, V. M. 1976. Effects of three teratogens on development of arteries in the secondary palate in rats. Teratology 13:113–130.

    CAS  Google Scholar 

  • Edwards, M. J. 1968. Congenital malformations in the rat following induced hyperthermia during gestation. Teratology 1:173–178.

    PubMed  CAS  Google Scholar 

  • Edwards, M. J., and Wanner, R. A. 1977. Extremes of temperature, in: Handbook of Teratology, Volume 1, J. G. Wilson and F. C. Fraser, eds. Plenum, New York, pp. 421–444.

    Google Scholar 

  • Edwards, M. J., Mulley, R., Ring, S., and Wanner, R. A. 1974. Mitotic cell death and delay of mitotic activity in guinea pig embryos following brief maternal hyperthermia. J. Embryol. Exp. Morphol. 32:593–602.

    PubMed  CAS  Google Scholar 

  • Farmer, D. R., and DeSesso, J. M. 1981. Reduction defects of the limb. Does altered ontogeny of limb-bud vasculature pattern determine the pattern of malformation? Teratology 23:34A (abstract).

    Google Scholar 

  • Ferm, V. H. 1964. Teratogenic effects of hyperbaric oxygen. Proc. Soc. Exp. Biol. Med. 116:975–976.

    PubMed  CAS  Google Scholar 

  • Ferris, P., Monomut, N., and Lobue, J. 1973. Trauma and tumor growth with special emphasis on wound stress and wound hormones, in: Humoral Control of Growth and Differentiation, Volume 1, J. Lobue and A. S. Gordon, eds. Academic, New York, pp. 361–373.

    Google Scholar 

  • Forsthoefel, P. F., and Williams, M. L. 1975. The effects of 5-fluorouracil and 5-fluorodeoxyuridine used alone and in combination with normal nucleic acid precursors on development of mice in lines selected for low and high expression of Strong’s luxoid gene. Teratology 11:1–20.

    PubMed  CAS  Google Scholar 

  • Franklin, J. B., and Brent, R. L. 1964. The effect of uterine vascular clamping on the development of rat embryos three to fourteen days old. J. Morphol. 115:273–290.

    PubMed  CAS  Google Scholar 

  • Fränz, J. 1981. Biological alterations in mouse embryos induced by DNA-antimetabolites. Teratology 23:35A (abstract).

    Google Scholar 

  • Gibson, J. E., and Becker, B. A. 1971. Teratogenicity of structural truncates of cyclophosphamide in mice. Teratology 4:141–150.

    CAS  Google Scholar 

  • Goss, R. M. 1961. Regeneration of vertebrate appendages. Adv. Morphogen. 1:103–152.

    Google Scholar 

  • Goss, R. J. 1978. The Physiology of Growth. Academic, New York.

    Google Scholar 

  • Grabowski, C. T. 1977. Atmospheric gases-variations in concentration and some common pollutants, in: Handbook of Teratology, Volume 1, J. G. Wilson and F. C. Fraser, eds. Plenum, New York, pp. 405–420.

    Google Scholar 

  • Graham, C. F. 1973. Nucleic acid metabolism during early mammalian development, in: The Regulation of Mammalian Reproduction, S. J. Segal, R. Crozier, P. A. Corfman, and P. G. Condliffe, eds. Thomas, Springfield, pp. 286–298.

    Google Scholar 

  • Green, E. L. 1951. The genetics of a difference in skeletal type between two inbred strains of mice (BalbC and C57B1k). Genetics 36:391–409.

    PubMed  CAS  Google Scholar 

  • Green, E. L. 1953. A skeletal difference between sublines of the C3H strain of mice. Science 117:81–82.

    PubMed  CAS  Google Scholar 

  • Gunberg, D. L. 1957. Some effects of exogenous hydrocortisone on pregnancy in the rat. Anat. Rec. 129:133–153.

    PubMed  CAS  Google Scholar 

  • Hale, F. 1935. Relation of vitamin A to anophthalmos in pigs. Am. J. Ophthalmol. 18:1087–1093.

    CAS  Google Scholar 

  • Hartley, W. J., Alexander, G., and Edwards, M. J. 1974. Brain cavitation and micrencephaly in lambs exposed to prenatal hyperthermia. Teratology 9:299–304.

    PubMed  CAS  Google Scholar 

  • Hasthorpe, S., and Hodgson, G. 1977. Proliferation of erythroid and granulocyte progenitors in the spleen as a function of stem cell dose. Cell Tiss. Kinet. 10:43–56.

    CAS  Google Scholar 

  • Hayashi, Y., Hoshino, K., and Kamayama, Y. 1977. Early pathological changes of mantle cells of the telencephalon by low dose X-irradiation in mouse embryos. Teratology 16:105A (abstract).

    Google Scholar 

  • Heath, J., Bell, S., and Rees, A. R. 1981. Appearance of functional insulin receptors during differentiation of embryonal carcinoma cells. J. Cell. Biol. 91:293–297.

    PubMed  CAS  Google Scholar 

  • Hellmann, W. 1979. Effects of fever and hyperthermia on the embryonic development of rabbits. Vet. Rec. 104:389–390.

    PubMed  CAS  Google Scholar 

  • Herken, R., Merker, H.-J., and Krowke, R. 1978. Investigation of the effect of hydroxyurea on the cell cycle and the development of necrosis in the embryonic CNS of mice. Teratology 18:103–118.

    PubMed  CAS  Google Scholar 

  • Hicks, S. P. 1954a. Mechanism of radiation anencephaly, anophthalmia, and pituitary anomalies. Repair in the mammalian embryo. Arch. Pathol. 57:363–378.

    CAS  Google Scholar 

  • Hicks, S. P. 1954b. The effects of ionizing radiation, certain hormones, and radiomimetic drugs on the developing nervous system. J. Cell. Comp. Physiol. 43:151–178.

    CAS  Google Scholar 

  • Hicks, S. P. 1958. Radiation as an experimental tool in mammalian development neurology. Physiol. Rev. 38:337–356.

    PubMed  CAS  Google Scholar 

  • Hicks, S. P., and D’Amato, C. J. 1966. Effects of ionizing radiations on mammalian development. Adv. Teratol. 1:196–250.

    Google Scholar 

  • Holder, N. 1981. Regeneration and compensatory growth. Br. Med. Bull. 37:227–232.

    PubMed  CAS  Google Scholar 

  • Hoshino, K. 1977. Experimental studies on the influence of low-dose X-radiation in utero. Teratology 16:98A (abstract).

    Google Scholar 

  • Hurley, L. S. 1977. Nutritional deficiencies and excesses, in: Handbook of Teratology, Volume 1, J. G. Wilson and F. C. Fraser, eds. Plenum, New York, pp. 261–308.

    Google Scholar 

  • Jacobsen, L. 1970. Radiation induced fetal damage. Adv. Teratol. 4:95–124.

    Google Scholar 

  • Jelinek, R., and Dostal, M. 1975. Inhibitory effect of corticoids on the proliferative pattern in mouse palatal processes. Teratology 11:193–198.

    PubMed  CAS  Google Scholar 

  • Jetten, A. M. 1980. Retinoids specifically enhance the number of epidermal growth factor receptors. Nature 284:626–629.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M. 1964. Effects of maternal folic acid deficiency on cytologic phenomena in the rat embryo. Anat. Rec. 149:49–55.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M. 1965. Nutritional factors in mammalian teratology, in: Teratology:Principles ndTechniques, J. G. Wilson and J. Warkany, eds. University of Chicago Press, Chicago, pp. 113–130.

    Google Scholar 

  • Johnson, E. M., Nelson, M. M., and Monie, I. W. 1963. Effects of transitory pteroylglutamic acid (PGA) deficiency on embryonic and placental development in the rat. Anat. Rec. 146:215–224.

    PubMed  CAS  Google Scholar 

  • Jost, A. 1969. Discussion, in: Limb Development and Deformity, C. A. Swinyard, ed. Thomas, Springfield, pp. 136–139.

    Google Scholar 

  • Jurand, A. 1968. The effect of hydrocortisone acetate on the development of mouse embryos. J. Embryol. Exp. Morphol. 20:355–366.

    PubMed  CAS  Google Scholar 

  • Kalter, H. 1957. Factors influencing the frequency of cortisone-induced cleft palate in mice. J. Exp. Zool. 134:449–467.

    PubMed  CAS  Google Scholar 

  • Kalter, H. 1968. Teratology of the Central Nervous System. University of Chicago Press, Chicago.

    Google Scholar 

  • Kalter, H., and Warkany, J. 1959. Experimental production of congenital malformations in mammals by metabolic procedure. Physiol. Rev. 39:69–115.

    PubMed  CAS  Google Scholar 

  • Kasabuchi, Y., Wakaizumi, S., Shimada, M., and Kusunoki, T. 1977. Cytosine arabinoside-induced transplacental dysgenetic hydrocephalus in mice. Teratology 16:63–70.

    Google Scholar 

  • Kauffmann, S. L. 1969. Cell proliferation in embryonic mouse neural tube following urethane exposure. Dey. Biol. 20:146–157.

    Google Scholar 

  • Kennedy, L. A., and Persaud, T. V. N. 1977. Pathogenesis of developmental defects induced in the rat by amniotic sac puncture. Acta Anat. 97:25–35.

    Google Scholar 

  • Kniegel, H., and Shibata, K. 1964. Histologische Unterstuchungen über die Beeinflussing der Embryonalentwicklung bei der Maus nach Röntgenbestrahlung. 1. Frühembryonale Veränderungen und Beeinflussung der Augenentwicklung. Strahlentherapie 124:573–587.

    Google Scholar 

  • Knudsen, T. B., and Kochhar, D. M. 1981. Limb development in mouse embryos. III. Cellular events underlying the determination of altered skeletal patterns following treatment with 5’fluoro-2-deoxyuridine. Teratology 23:241–251.

    PubMed  CAS  Google Scholar 

  • Kochhar, D. M. 1977. Cellular basis of congenital limb deformity induced in mice by vitamin A. Birth Defects 13:111–154.

    CAS  Google Scholar 

  • Kochhar, D. M., Penner, J. D., and McDay, J. A. 1978. Limb development in mouse embryos. II. Reduction defects, cytotoxicity and inhibition of DNA synthesis produced by cytosine arabinoside. Teratology 18:71–92.

    PubMed  CAS  Google Scholar 

  • Kreshover, S. J., and Clough, O. W. 1953. Prenatal influences on tooth development. II. Artificially induced fever in rats. J. Dent. Res. 32:565–577.

    PubMed  CAS  Google Scholar 

  • Kreybig, T. V., and Schmidt, W. 1966. Zur chemischen Teratogenese bei der Ratte. Arzneimittelforschung 16:989–1000.

    CAS  Google Scholar 

  • Kusama, T., and Yoshizawa, Y. 1975. The mitotic index in the mouse fetal liver as a biological indicator of radiation effects (in Japanese). Nippon Acta Radiol. 35:908–912.

    PubMed  CAS  Google Scholar 

  • Kwasigroch, T. E., and Kochhar, D. M. 1980. Vitamin A alters the internal viscosity of fragments of limb-bud mesenchyme. J. Embryol. Exp. Morphol. 59:325–339.

    PubMed  CAS  Google Scholar 

  • Lamerton, L. F., and Blackett, N. M. 1974. A comparison of proliferative characteristics of bone marrow and tumors and response to cytotoxic agents, in: Control of Proliferation in Animal Cells, B. Clarkson and R. Baserga, eds. Cold Spring Harbor, New York, pp. 973–984.

    Google Scholar 

  • Langman, J., and Cardell, E. L. 1977. Cell degeneration and recovery of the fetal mammalian brain after a chemical insult. Teratology 16:15–33.

    PubMed  CAS  Google Scholar 

  • Langman, J., and Cardell, E. L. 1978. Ultrastructural observations on FUdR-induced cell death and subsequent elimination of cell debris. Teratology 17:229–270.

    PubMed  CAS  Google Scholar 

  • Langman, J., and Shimada, M. 1971. Cerebral cortex of the mouse after prenatal chemical insult. Am. J. Anat. 132:355–374.

    PubMed  CAS  Google Scholar 

  • Langman, J., Cardell, E. L., and Crowley, K. K. 1980. Cell degeneration and repair in the fetal mammalian CNS. Adv. Study Birth Defects 4:23–44.

    CAS  Google Scholar 

  • Lecyk, M. 1966. The effect of hyperthermia applied in the given stages of pregnancy on the number of form of vertebrae in the offspring of white mice. ExPerientia 22:254–255.

    PubMed  CAS  Google Scholar 

  • Lecyk, M. 1969. The effect of abnormal temperatures applied during the pregnancy on the structure of the vertebral column in the offspring of mammals showed by the example of the white mouse. II. Hyperthermia. Zool. Pol. 19:97–114.

    Google Scholar 

  • Lorente, C. A., and Miller, S. A. 1978. The effect of hypervitaminosis A on rat palatal development. Teratology 18:277–284.

    PubMed  CAS  Google Scholar 

  • Marin-Padilla, M. 1966. Mesodermal alterations induced by hypervitaminosis A. J. Embryol. Exp. Morphol. 15:261–269.

    PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., and Ferm, V. 1965. Somite necrosis and developmental malformation induced by vitamin A in the golden hamster. J. Embryol. Exp. Morphol. 13:1–8.

    PubMed  CAS  Google Scholar 

  • McLaren, A., and Michie, D. 1956. Factors affecting vertebral variations in mice. 3. Maternal effects in reciprocal crosses. J. Embryol. Exp. Morphol. 4:161–166.

    Google Scholar 

  • McLaren, A., and Michie, D. 1958. Factors affecting vertebral variation in mice. 4. Experimental proof of the uterine basis of a maternal effect. J. Embryol. Exp. Morphol. 6:645–659.

    PubMed  CAS  Google Scholar 

  • McLaren, A., and Michie, D. 1960. Control of pre-natal growth in mammals. Nature 187:363–365.

    Google Scholar 

  • Menkes, B., Sandor, S., and Ilies, A. 1970. Cell death in teratogenesis. Adv. Teratol. 4:169–215.

    Google Scholar 

  • Mercier-Parot, L., 1957. InRuence de la cortisone et de l’hormone corticotrope sur la gestation et le développement post-natal du rat. Biol. Med. 46:1–95.

    Google Scholar 

  • Merker, J.-J., Pospisil, M., and Mewes, P. 1975. Cytotoxic effects of 6-mercaptopurine on the limbbud blastemal cells of rat embryos. Teratology 11:199–218.

    PubMed  CAS  Google Scholar 

  • Moore, N. W., Adams, C. E., and Rowson, L. E. A. 1968. Development potential of single blastomeres of the rabbit egg. J. Reprod. Fertil. 17:527–531.

    PubMed  CAS  Google Scholar 

  • Morriss, G. M. 1972. Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J. Anat. 113:241–250.

    PubMed  CAS  Google Scholar 

  • Morriss, G. M., and New, D. A. T. 1979. Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. J. Embryol. Exp. Morphol. 54:17–35.

    PubMed  CAS  Google Scholar 

  • Mott, W. J., Toto, P. D., and Hilgers, D. C. 1969. Labelling index and cellular density in palatine shelves of cleft-palate mice. J. Dent. Res. 48:263–265.

    PubMed  CAS  Google Scholar 

  • Nakamura, H. 1975. Analysis of limb anomalies induced in vitro by vitamin A (retinol) in mice. Teratology 12:61–70.

    PubMed  CAS  Google Scholar 

  • Neligan, G. A., Kolvin, I., Scott, D. McL., and Garside, R. F. 1976. Born too soon or born too small, Clinics in Developmental Medicine No. 61. Spastics International Medical, London.

    Google Scholar 

  • Nelson, M. M., Asling, C. W., and Evans, H. M. 1952. Production of multiple congenital abnormalities in young by maternal pteroylglutamic acid deficiency during gestation. J. Nutr. 48:61–80.

    PubMed  CAS  Google Scholar 

  • Nelson, M. M., Wright, H. V., Asling, C. W., and Evans, H. M. 1955. Multiple congenital abnormalities resulting from transitory deficiency of pteroylglutamic acid during gestation in the rat. J. Nutr. 56:349–370.

    PubMed  CAS  Google Scholar 

  • Nelson, M. M., Wright, H. V., Baird, C. D. C., and Evans, H. M. 1956. Effect of a 36-hour period of pteroylglutamic acid deficiency on fetal development in rats. Proc. Soc. Exp. Biol. Med. 92:554–556.

    PubMed  CAS  Google Scholar 

  • New, D. A. T. 1978. Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev. 53:81–122.

    PubMed  CAS  Google Scholar 

  • New, D. A. T., and Coppola, P. T. 1970. Development of explained rat fetuses in hyperbaric oxygen. Teratology 3:153–162.

    PubMed  CAS  Google Scholar 

  • Nimura, H., and Nishimura, H. 1960. The effect of ethylurethane on the mitotic activity of precartilage cells in the hand plate of mouse embryos. Arch. Histol. Jap. 20:177–179.

    Google Scholar 

  • Nishimura, H., and Kuginuki, M. 1958. Congenital malformations induced by ethyl-urethan in mouse embryos. Folia Anat. Jap. 31:1–10.

    CAS  Google Scholar 

  • Ornoy, A. 1971. The effects of maternal hypercortisonism and hypervitaminosis D on fetal osteogenesis and ossification in rats. Teratology 4:383–394.

    PubMed  CAS  Google Scholar 

  • Palludan, B. 1969. Vitamin A deficiency and the organogenesis of the eye, in: Teratology, A Bertell and L. Donati, eds. Excerpta Medica, Amsterdam, pp. 119–128.

    Google Scholar 

  • Patel, A. J., and Lewis, P. D. 1981. Effects on cell proliferation of pharmacological agents acting on the central nervous system, in: Mechanisms of Neurotoxin Substances, K. Prasad and A. Vernadakis, eds. Raven, New York, pp. 181–218.

    Google Scholar 

  • Pennycuik, P. R. 1965. The effects of acute exposure to high temperatures on prenatal development in the mouse with particular reference to secondary vibrissae. Aust. J. Biol. Sci. 18:97–113.

    PubMed  CAS  Google Scholar 

  • Poswillo, P. 1975. Hemorrhage in development of the face. Birth Defects 11:61–81.

    PubMed  CAS  Google Scholar 

  • Poswillo, D., Nunnerley, H., Sopher, D., and Keith, J. 1974. Hyperthermia as a teratogenic agent. Ann. R. Coll. Surg. 55:171–174.

    CAS  Google Scholar 

  • Potten, C. S. 1977. Extreme sensitivity of some intestinal crypt cells to X and γ-irradiation. Nature 269:518–521.

    PubMed  CAS  Google Scholar 

  • Prader, A., Tanner, J. M., and Harnack, G.-A. v. 1963. Catch-up growth following illness or starvation. J. Pediat. 62:646–651.

    PubMed  CAS  Google Scholar 

  • Ritter, E. J., Scott, W. J., and Wilson, J. G. 1971. Teratogenesis and inhibition of DNA synthesis induced in rat embryos by cytosine arabinoside. Teratology 4:7–14.

    PubMed  CAS  Google Scholar 

  • Ritter, E. J., Scott, W. J., and Wilson, J. G. 1973. Relationship of temporal patterns of cell death and development of malformations in the rat limb. Possible mechanisms of teratogenesis with inhibitors of DNA synthesis. Teratology 7:219–226.

    CAS  Google Scholar 

  • Rodier, P. M. 1977. Correlations between prenatally-induced alterations in CNS cell populations and postnatal function. Teratology 16:235–246.

    PubMed  CAS  Google Scholar 

  • Rodier, P. M., Webster, W. S., and Langman, J. 1975. Morphological and behavioral consequences of chemically induced lesions of CNS, in: Aberrant Development in Infancy: Human and Animal Studies, H. R. Ellis, ed. Lawrence Erlbaum, New Jersey, pp. 177–185.

    Google Scholar 

  • Roux, J. M., Jahchan, T., and Fulchignoni, M. C. 1975. Desoxyribonucleic acid and pyrimidine synthesis in the rat during intra-uterine growth retardation: responsiveness of several organs. Biol. Neonate 27:129–140.

    PubMed  CAS  Google Scholar 

  • Rugh, R., Duhamel, L., Osborne, A. W., and Sweeney, W. A. 1969. Skeletal development of mice X-irradiated in utero. J. Anat. 125:169–176.

    CAS  Google Scholar 

  • Russell, L. B. 1956. X-ray-induced developmental abnormalities in the mouse and their use in the analysis of embryological patterns. J. Exp. Zool. 131:329–395.

    Google Scholar 

  • Russell, L. B. 1979. Sensitivity patterns for the induction of homeotic shifts in a favorable strain of mice. Teratology 20:115–126.

    PubMed  CAS  Google Scholar 

  • Russell, L. B., and Russell, W. L. 1954. An analysis of the changing radiation response of the developing mouse embryo. J. Cell. Comp. Physiol. 43:103–149.

    CAS  Google Scholar 

  • Russell, L. B., Badgett, S. K., and Saylors, C. L. 1959. Comparison of the effects of acute, continuous, and fractionated irradiation during embryonic development, in: Immediate and Low Level Effects of Ionizing Radiations, A. A. Buzzati-Traverso, ed. Taylor and Francis, London, pp. 343–359.

    Google Scholar 

  • Saxén, L. 1977. Abnormal cellular and tissue interactions, in: Handbook of Teratology, Volume 2, J. G. Wilson and F. C. Fraser, eds. Plenum, New York, pp. 171–198.

    Google Scholar 

  • Schmahl, W. 1979. Different teratogenic efficacy to mouse fetal CNS of 5-azacytidine in combination with X-irradiation depends on the sequence of successive application. Teratology 19:63–70.

    PubMed  CAS  Google Scholar 

  • Schmahl, W., Weber, L., and Kriegel, H. 1979. X-irradiation of mice in the early fetal period. Strahlentherapie 155:347–357.

    PubMed  CAS  Google Scholar 

  • Schweichel, J.-U., and Merker, H.-J. 1973. The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266.

    Google Scholar 

  • Scott, W. J. 1977. Cell death and reduced proliferative rate, in: Handbook of Teratology, Volume 2, J. G. Wilson and F. C. Fraser, eds. Plenum, New York, pp. 81–98.

    Google Scholar 

  • Scott, W. J., Ritter, E. J., and Wilson, J. G. 1971. DNA synthesis inhibition and cell death associated with hydroxyurea teratogenesis in rat embryos. Dev. Biol. 26:306–315.

    PubMed  CAS  Google Scholar 

  • Scott, W. J., Ritter, E. J., and Wilson, J. G. 1975. Studies on induction of polydactyly in rats with cytosine arabinoside. Dec. Biol. 45:103–111.

    CAS  Google Scholar 

  • Seifertova, M., Vesely, J., Cihak, A., and Sorm, F. 1972. Pycnotic degeneration of ventricular cells in embryonic brain following transplacental exposure to 5-azacytidine. Experientia 28:841–842.

    PubMed  CAS  Google Scholar 

  • Seifertova, M., Cihak, A., and Vesely, J. 1973. Effect of 5-azacytidine and 6-azauridine on the synthesis of DNA in embryonic mouse brain. Mitotic activity and migration of ventricular cells. Neoplasma 20:243–249.

    PubMed  CAS  Google Scholar 

  • Shah, R. M. 1979. Current concepts on the mechanisms of normal and abnormal secondary palate formation. Adv. Study Birth Defects 1:69–84.

    Google Scholar 

  • Shah, R. M., and Travill, A. A. 1976. Morphogenesis of the secondary palate in normal and hydrocortisone-treated hamsters. Teratology 13:71–84.

    PubMed  CAS  Google Scholar 

  • Shenefelt, R. E. 1972. Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage of treatment. Teratology 5:103–118.

    PubMed  CAS  Google Scholar 

  • Shimada, M., and Langman, J. 1970. Repair of the external granular layer of the hamster cerebellum after prenatal and postnatal administration of methylazoxymethanol. Teratology 3:119–134.

    PubMed  CAS  Google Scholar 

  • Sinclair, J. G. A. 1950. A specific transplacental effect of urethane in mice. Tex. Rep. Biol. Med. 8:623–632.

    PubMed  CAS  Google Scholar 

  • Singh, S., and Sanyal, A. K. 1974. Skeletal malformations of forelimbs of rat fetuses caused by maternal administration of cyclophosphamide during pregnancy. J. Anat. 117:179–189.

    PubMed  CAS  Google Scholar 

  • Škreb, N. 1965. Temperature critique provoquant des malformations pendant le développement embryonnaire du rat et ses effets immediats. C. R. Acad. Sci. 261:3214–3216.

    Google Scholar 

  • Škreb, N., and Frank, Z. 1963. Developmental abnormalities in the rat induced by heat-shock. J. Embryol. Exp. Morphol. 11:445–457.

    PubMed  Google Scholar 

  • Smith, J. C. 1981. Growth factors and pattern formation. J. Embryol. Exp. Morphol. Suppl. 65:187–207.

    CAS  Google Scholar 

  • Smith, L. J. 1964. The effects of transection and extirpation on axis formation and elongation in the young mouse embryo. J. Embryol. Exp. Morphol. 12:787–803.

    PubMed  CAS  Google Scholar 

  • Snow, M. H. L. 1976. Embryo growth during the immediate post-implantation period, in: Embryogenesis in Mammals (Ciba Foundation Symposium 40). Elsevier/North-Holland, Amsterdam, pp. 53–70.

    Google Scholar 

  • Snow, M. H. L. 1977. Gastrulation in the mouse: growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42:293–303.

    Google Scholar 

  • Snow, M. H. L. 1978. Proliferative centres in embryonic development, in: Development in Mammals, Volume 3, M. H. Johnson, ed. Elsevier/North-Holland, Amsterdam, pp. 337–362.

    Google Scholar 

  • Snow, M. H. L. 1981a. Autonomous development of parts isolated from primitive-streak-stage mouse embryos. Is development clonal? J. Embryol. Exp. Morphol. Suppl. 65:269–287.

    Google Scholar 

  • Snow, M. H. L. 1981b. Growth and its control in early mammalian development. Br. Med. Bull. 37:221–226.

    PubMed  CAS  Google Scholar 

  • Snow, M. H. L., and Tam, P. P. L. 1979. Is compensatory growth a complicating factor in mouse teratology? Nature 279:555–557.

    PubMed  CAS  Google Scholar 

  • Snow, M. H. L., Tam, P. P. L., and McLaren, A. 1981. On the control and regulation of size and morphogenesis in mammalian embryos, in: Levels of Genetic Control in Development, S. Subtelny, ed. Alan Liss, New York, pp. 201–217.

    Google Scholar 

  • Spatz, M., and Laqueur, G. L. 1968. Transplacental chemical induction of microencephaly in two strains of rats. Proc. Soc. Exp. Biol. Med. 129:705–710.

    PubMed  CAS  Google Scholar 

  • Strange, J. R., and Murphree, R. L. 1972. Exposure rate response in the prenatally irradiated rat. Effects of 100 R on day 11 of gestation to the developing eye. Radiat. Res. 51:674–684.

    PubMed  CAS  Google Scholar 

  • Strickland, S., and Mahdavi, V. 1978. Induction of differentiation in teratocarcinoma stem-cells by retinoic acid. Cell 15:393–404.

    PubMed  CAS  Google Scholar 

  • Tam, P. P. L. 1981. The control of somitogenesis in mouse embryos. J. Embryol. Exp. Morphol. Suppl. 65:103–128.

    Google Scholar 

  • Tam, P. P. L., and Snow, M. H. L. 1980. The in vitro culture of primitive-streak-stage mouse embryos. J. Embryol. Exp. Morphol. 59:131–143.

    PubMed  CAS  Google Scholar 

  • Tam, P. P. L., and Snow, M. H. L. 1981. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 64:133–147.

    PubMed  CAS  Google Scholar 

  • Tanner, J. M. 1963. Regulation of growth in size in mammals. Nature 199:845–850.

    PubMed  CAS  Google Scholar 

  • Tanner, J. M. 1981a. Catch-up growth in man. Br. Med. Bull. 37:233–238.

    PubMed  CAS  Google Scholar 

  • Taylor, I. M. 1979. The effect of retinoic acid on the developing hamster heart-an ultrastructural and morphological study. Adv. Study Birth Defects 3:119–134.

    CAS  Google Scholar 

  • Theodosis, D. T., and Clarke-Fraser, F. 1978. Early changes in the mouse neuroepithelium preceding exencephaly induced by hypervitaminosis A. Teratology 18:219–232.

    PubMed  CAS  Google Scholar 

  • Tubiana, M., Frindel, E., Croizat, H., and Vassort, F. 1974. Study of some of the factors influencing the proliferation and differentiation of the multipotential hemopoietic stem cells, in: Control of Proliferation in Animal Cells, B. Clarkson and R. Baserga, eds. Cold Spring Harbor, New York, pp. 933–944.

    Google Scholar 

  • Vorhees, C. V., Brunner, R. L., McDaniel, C. R., and Butcher, R. E. 1978. The relationship of gestational age to vitamin A induced postnatal dysfunction. Teratology 17:271–276.

    PubMed  CAS  Google Scholar 

  • Waddington, C. H. 1937. Experiments on determination in the rabbit embryo. Arch. Biol. 48:273–289.

    Google Scholar 

  • Warkany, J., and Schraffenberger, E. 1943. Congenital malformations induced in rats by maternal nutritional deficiency. V. Effects of a purified diet lacking riboflavin. Proc. Soc. Exp. Biol. Med. 54:92–94.

    CAS  Google Scholar 

  • Warkany, J., and Schraffenberger, E. 1944. Congenital malformations induced in rats by maternal nutritional deficiency. VI. The preventative factor. J. Nutr. 27:477–484.

    CAS  Google Scholar 

  • Webster, W., Shimada, M., and Langman, J. 1973. Effect of fluorodeoxyuridine, colcemid, and bromodeoxyuridine on developing neocortex of the mouse. Am. J. Anat. 137:67–86.

    PubMed  CAS  Google Scholar 

  • Weinberg, S. R., McCarthy, E. G., and MacVittie, T. J. 1981. Fetal murine hemopoiesis following in utero low-dose irradiation. J. Embryol. Exp. Morphol. 62:37–46.

    PubMed  CAS  Google Scholar 

  • Wendler, D. 1979. Pathogenesis of cyclophosphamide-induced fetal anomalies. Adv. Study Birth Defects 3:95–118.

    CAS  Google Scholar 

  • Willadsen, S. M. 1979. A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 277:298–300.

    PubMed  CAS  Google Scholar 

  • Willadsen, S. M. 1981. The developmental capacity of blastomeres from 4- and 8-cell sheep embryos. J. Embryol. Exp. Morphol. 65:165–172.

    PubMed  CAS  Google Scholar 

  • Williams, J. P. G. 1981. Catch-up growth. J. Embryol. Exp. Morphol. Suppl. 65:89–101.

    Google Scholar 

  • Wilson, J. G. 1954. Differentiation and the reaction of rat embryos to radiation. J. Cell. Comp. Physiol. 43:11–37.

    CAS  Google Scholar 

  • Wilson, J. G. 1973. Environment and Birth Defects. Academic, New York.

    Google Scholar 

  • Wilson, J. G., and Karr, J. W. 1951. Effects of irradiation on embryonic development I. X-rays on the 10th day of gestation in the rat. Am. J. Anat. 88:1–34.

    PubMed  CAS  Google Scholar 

  • Wilson, J. G., Jordan, H. C., and Brent, R. L. 1953. Effects of irradiation on embryonic development. II. X-rays on the 9th day of gestation in the rat. Am. J. Anat. 92:153–188.

    PubMed  CAS  Google Scholar 

  • Wilson, J. G., Scott, W. J., Ritter, E. J., and Fradkin, R. 1975. Comparative distribution and embryotoxicity of hydroxyurea in pregnant rats and rhesus monkeys. Teratology 11:169–178.

    PubMed  CAS  Google Scholar 

  • Wyllie, A. K., Kerr, J. F. R., and Currie, A. R. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251–306.

    PubMed  CAS  Google Scholar 

  • Yeates, N. T. M. 1953. The effect of high air temperature on reproduction in the ewe. J. Agr. Sci. 43:199–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Snow, M.H.L. (1983). Restorative Growth in Mammalian Embryos. In: Kalter, H. (eds) Issues and Reviews in Teratology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7311-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7311-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7313-5

  • Online ISBN: 978-1-4615-7311-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics