Skip to main content

Analytical Diffusion Models for Membrane Channels

  • Chapter
Ion Channels

Abstract

Evidence gained from such techniques as patch clamp, membrane protein reconstitution, site-directed mutagenesis, and electron microscopy yields a picture of a channel as a globular transmembrane protein containing a water-filled pore. This pore provides a low-energy pathway through which ions may pass, producing a current. This current is modulated by a process known as gating. The mechanism of gating involves some poorly understood conformational transition in the channel protein that necessarily results in a large change in the energy barrier to ion transport. Many factors in the environment of the protein affect the gating process, including transmembrane voltage, membrane distortion, and binding of specific molecules such as chemical transmitters and channel modulators. Hence, the transmembrane current of cells is determined by the number and type of channels, the probability that a channel is open (gating), and the mean open channel current (for a general reference to channel phenomenology, see Hille, 1984). This work will be specifically directed at this last factor, analyzing the current through the open channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, O. S., 1983, Ion movement through gramicidin A channels: Interfacial polarization effects on single-channel current measurements, Biophys. J. 41: 135–146.

    Article  Google Scholar 

  • Bockris, J. O. M., and Reddy, A. K. N., 1970, Modern Electrochemistry, Plenum Press, New York.

    Google Scholar 

  • Chandrasekhar, S., 1943, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15: 189.

    Article  Google Scholar 

  • Cole, K., 1965, Electrodiffusion models for the membrane of giant axon, Physiol. Rev. 45: 340–379.

    PubMed  CAS  Google Scholar 

  • Cooper, K. E., Gates, P. Y., and Eisenberg, R. S., 1988, Surmounting barriers in ionic channels, Q. Rev. Biophys. 21: 331–364.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., and Dani, J. A., 1987, An introduction to molecular architecture and permeability of ion channels, Annu. Rev. Biophys. Biophys. Chem. 1: 205–226.

    Article  Google Scholar 

  • Eyring, H., Lumry, R., and Woodbury, J. W., 1949, Some applications of modern rate theory to physiological systems, Rec. Chem. Prog. 10: 100–114.

    CAS  Google Scholar 

  • Gardiner, C. W., 1983, Handbook of Stochastic Methods, Springer-Verlag, Berlin.

    Google Scholar 

  • Gates, P. Y., 1988, Analytical Diffusion Models for Ion Channels, Ph.D. thesis, Rush University, Chicago.

    Google Scholar 

  • Gates, P. Y., Cooper, K. E., and Eisenberg, R. S., 1987, Diffusive flux through ionic channels, Biophys. J. 51: 48a.

    Google Scholar 

  • Goel, N. S., and Richter-Dyn, N., 1974, Stochastic Models in Biology, Academic Press, New York.

    Google Scholar 

  • Goldman, D. E., 1943, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27: 37–60.

    Article  PubMed  CAS  Google Scholar 

  • Hardt, S. L., 1981, The diffusion transit time: Simple derivation, Bull. Math. Biol. 43: 89–99.

    Google Scholar 

  • Heckmann, K., 1965a, Zur theorie der “Single File”—diffusion, I, Z. Phys. Chem. (Frankfurt am Main) 44: 184–203.

    Article  Google Scholar 

  • Heckmann, K., 1965b, Zur theorie der “Single File”—diffusion, II, Z. Phys. Chem. (Frankfurt am Main) 46: 1–25.

    Article  CAS  Google Scholar 

  • Heckmann, K., 1968, Zur theorie der “Single File”—diffusion, III. Sigmiode Konzentrationsabhangigkeit uniderictionaler Flusse bei “single file” Diffusion, Z. Phys. Chem. (Frankfurt am Main) 58: 201–219.

    Google Scholar 

  • Heckmann, K., 1972, Single-file diffusion, in: Biomembranes, Volume 3 ( F. Kreuzer and J. F. G. Siegers, eds), Plenum Press, New York, pp. 127–153.

    Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Hladky, S. B., and Haydon, D. A., 1984, Ion movements in gramicidin channels. Curr. Top. Membr. Transp. 21: 327–372.

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108: 37–77.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Keynes, R. D., 1955, The potassium permeability of a giant nerve fiber, J. Physiol. (London) 128: 61–88.

    CAS  Google Scholar 

  • Jakobsson, E., and Chiu, S., 1987, Stochastic theory of ion movement in channels with single-ion occupancy, Biophys. J. 52: 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C., 1984, Effect of pore structure on energy barriers and applied voltage profiles. I. Symmetrical channels, Biophys. J. 45: 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, P. C., 1987, Microscopic approaches to ion transport through transmembrane channels. The model system gramicidin, J. Chem. Phys. 91: 6582–6591.

    Article  CAS  Google Scholar 

  • Lauger, P., 1973, Ion transport through pores: A rate-theory analysis, Biochim. Biophys. Acta 311: 423–441.

    Article  PubMed  CAS  Google Scholar 

  • Lauger, P., 1976, Diffusion-limited ion flow through pores, Biochem. Biophys. Acta 455: 493–509.

    Article  PubMed  CAS  Google Scholar 

  • Lauger, P., 1979, Transport of noninteracting ions through channels, in: Membrane Transport Processes: Ion Permeation through Membrane Channels, Volume 3 (C. F. Stevens and R. W. Tsien, eds.), Raven Press, New York.

    Google Scholar 

  • Langer, P., 1987, Dynamics of ion transport systems in membranes, Physiol. Rev. 67: 1296–1331.

    Google Scholar 

  • Levitt, D. G., 1979, Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions, Biophys. J. 22: 209–219.

    Article  Google Scholar 

  • Levitt, D. G., 1982, Comparison of Nernst–Planck and reaction-rate models for multiply occupied channels, Biophys. J. 37: 575–587.

    PubMed  CAS  Google Scholar 

  • Levitt, D. G., 1985, Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels, Biophys, J. 48: 19–31.

    Article  CAS  Google Scholar 

  • Levitt, D. G., 1986, Interpretation of biological ion channel flux data. Reaction rate versus continuum theory, Annu. Rev. Biophys. Biophys. Chem. 15: 29–57.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, D. G., 1987, Exact continuum solution for a channel that can be occupied by two ions, Biophys, J. 52: 455–466.

    Article  CAS  Google Scholar 

  • Lorrain, P., and Corson, D., 1970, Electromagnetic Fields and Waves, 2nd ed., Freeman, San Francisco.

    Google Scholar 

  • McQuarrie, D. A., 1976, Statistical Mechanics, Harper & Row, New York.

    Google Scholar 

  • Moore, W. J., 1977, Electrochemistry of nerves, in: Special Topics in Electrochemistry (P. Rock, ed.), pp. 128–160.

    Google Scholar 

  • Rice, S. A., 1985, Comprehensive Chemical Kinetics: Diffusion Limited Reactions, Volume 25, Elsevier, Amsterdam.

    Google Scholar 

  • Schulten, K., Schulten, Z., and Szabo, A., 1981, Dynamics of reactions involving diffusive barrier crossing. J. Chem. Phys. 74: 4426–4432.

    Article  CAS  Google Scholar 

  • Smoluchowski, M. V., 1917, Versuch einer mathematischen theorie der koagulationskinetic kolloider losungen, Z. Phys. Chem. (Leipzig) 92: 129–168.

    Google Scholar 

  • Sten-Knudsen, O., 1978, Passive transport processes, in: Membrane Transport in Biology: Concepts and Models, Volume I ( D. C. Tosteson, ed.), Springer-Verlag, Berlin, pp. 5–113.

    Google Scholar 

  • Urban, B. W., and Hladky, S. B., 1979, Ion transport in the simplest single file pore, Biochim. Biophys. Acta 554: 410–429.

    Article  PubMed  CAS  Google Scholar 

  • Walz, D., Bamberg, E., and Langer, P., 1969, Nonlinear electrical effects in lipid bilayer membranes. I. Ion injection, Biophys, J. 9: 1150–1159.

    Article  CAS  Google Scholar 

  • Weiss, G. H., 1966, First passage time problems in chemical physics, Adv. Chem. Phys. 13: 1–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Gates, P.Y., Cooper, K.E., Eisenberg, R.S. (1990). Analytical Diffusion Models for Membrane Channels. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7305-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7305-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7307-4

  • Online ISBN: 978-1-4615-7305-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics