Skip to main content
Book cover

Ion Channels pp 169–203Cite as

ATP-Activated Channels in Excitable Cells

  • Chapter

Abstract

There is increasing evidence that ATP may play a role as an extracellular chemical messenger, probably even a true neurotransmitter. The strongest evidence for ATP being used as a synaptic transmitter has come from studies on sympathetic transmission to smooth muscle targets in the vas deferens and various blood vessels. For example, ATP applied to rat or guinea pig vas deferens muscle depolarizes the muscle and produces a twitch like that elicited by nerve stimulation. Both the ATP-induced depolarization and the nerve-evoked excitatory junction potential can be inhibited by structural analogues of ATP like arylazido aminopropionyl ATP (ANAPP3) and α,β-methylene ATP (Sneddon et al., 1982; Sneddon and Burnstock, 1984; Sneddon and Westfall, 1984). Recently, it has been shown that isolated vas deferens smooth muscle cells contain cation-selective channels that are opened by micromolar concentrations of ATP (Nakazawa and Matsuki, 1987; Friel, 1988). The channels have a reversal potential near 0 mV so that they have an excitatory effect on the cell. It seems very likely that a component of fast, nonadrenergic, noncholinergic transmission is mediated by nerve-released ATP opening these channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, N., Inoue, M., and Krishtal, O. A., 1986, ‘Concentration-clamp’ study of y-aminobutyric acid-induced chloride current in frog sensory neurones, J. Physiol. (London) 379:171–185.

    CAS  Google Scholar 

  • Akasu, T., and Koketsu, K., 1985, Effect of adenosine triphosphate on the sensitivity of the nicotinic acetycholine-receptor in the bullfrog sympathetic ganglion cell, Br. J. Pharmacol. 84: 525–531.

    PubMed  CAS  Google Scholar 

  • Akasu, T., Hirai, K., and Koketsu, K., 1981, Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: A novel action of ATP on ACh-sensitivity, Br. J. Pharmacol. 74: 505–507.

    PubMed  CAS  Google Scholar 

  • Akasu, T., Hirai, K., and Koketsu, K., 1983, Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells, Brain Res. 358: 313–317.

    Article  Google Scholar 

  • Argibay, J. A., Dutey, P., Ildefonse, M., Ojeda, C., Rougier, O., and Torneur, Y., 1983, Block by Cs of K current iK1 and of carbachol-induced K current iCch in frog atrium, Pfluegers Arch. 397: 295–299.

    Article  CAS  Google Scholar 

  • Bean, B. P., 1989, ATP-activated channels in rat and frog sensory neurons: Concentration-dependence and kinetics, J. Neurosci. in press.

    Google Scholar 

  • Bean, B. P., Williams, C. A., and Ceelen, P. W., 1989, ATP-activated channels in rat and frog sensory neurons: Current—voltage relationship and single channel currents, J. Neurosci. in press.

    Google Scholar 

  • Belardinelli, L., and Isenberg, G., 1983, Isolated atrial myocytes: Adenosine and acetylcholine increase K conductance, Am. J. Physiol. 244: H734 - H737.

    PubMed  CAS  Google Scholar 

  • Benham, C. D., and Tsien, R. W., 1987, A novel receptor-operated Cat -permeable channel activated by ATP in smooth muscle, Nature 328: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Benham, C. D., Bolton, T. B., Byrne, N. G., and Large, W. A., 1987, Action of externally applied adenosine triphosphate on single smooth muscle cells from rabbit ear artery, J. Physiol. (London) 387: 473–488.

    CAS  Google Scholar 

  • Breitwieser, G. E., and Szabo, G., 1985, Uncoupling of cardiac muscarinic receptors and betaadrenergic receptors from ion channels by a guanine nucleotide analogue, Nature 317: 538–540.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A., 1988, M currents, in: Ion Channels, Volume 1 ( T. Narahashi, ed.), Plenum Press, New York, pp. 55–94.

    Chapter  Google Scholar 

  • Burnstock, G., 1978, A basis for distinguishing two types of purinergic receptor, in: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach ( L. Bolis and R. W. Straub, eds.), Raven Press, New York, pp. 107–118.

    Google Scholar 

  • Burnstock, G., 1979, Past and current evidence for the purinergic nerve hypothesis, in: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides ( H. P. Baer and G. I. Drummond, eds.), Raven Press, New York, pp. 3–32.

    Google Scholar 

  • Burnstock, G., and Meghji, P., 1983, The effect of adenyl compounds on the rat heart, Br. J. Pharmacol. 79: 211–218.

    PubMed  CAS  Google Scholar 

  • Charest, R., Blackmore, P. F., and Exton, J. H., 1985, Characterization of responses of isolated rat hepatocyes to ATP and ADP, J. Biol. Chem. 260: 15789–15794.

    PubMed  CAS  Google Scholar 

  • Cockcroft, S., and Gomperts, B. D., 1979, Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells, J. Physiol. (London) 296: 229–243.

    CAS  Google Scholar 

  • Colquhoun, D., and Ogden, D. C., 1988, Activation of ion channels in the frog end-plate by high concentrations of acetylcholine, J. Physiol. (London) 395: 131–159.

    CAS  Google Scholar 

  • Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F., 1981, Inward current activated by intracellular Ca+ + in cultured cardiac cells, Nature 294: 752–754.

    Article  PubMed  CAS  Google Scholar 

  • Donald, F. M. S., 1985, A non-adrenergic, non-cholinergic (NANC) excitatory response in frog atria, Br. J. Pharmacol. 85: 211P (Abstr.)

    Google Scholar 

  • Drury, A. N., and Szent-Gyorgyi, A., 1929, The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart, J. Physiol. (London) 68: 213–237.

    CAS  Google Scholar 

  • Dubyak, G. R., and DeYoung, M. B., 1985, Intracellular Ca2+ mobilization by extracellular ATP in Ehrlich ascites tumor cells, J. Biol. Chem. 260: 10653–10661.

    PubMed  CAS  Google Scholar 

  • Dunn, P. M., and Blakeley, A. G. H., 1988, Suramin: A reversible P2-purinoceptor antagonist in the mouse vas deferens, Br. J. Pharmacol. 93: 243–245.

    PubMed  CAS  Google Scholar 

  • Dwyer, T. M., Adams, D. J., and Hille, B., 1980, The permeability of the endplate channel to organic cations in frog muscle, J. Gen. Physiol. 75: 469–492.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, Y. H., Davis, T. B., Bock, E., Kornecki, E., and Lenox, R. H., 1986, Ecto-protein kinase activity on the external surface of neural cells, Nature 320: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Ewald, D. A., 1976, Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides, J. Membr. Biol. 29: 47–65.

    Article  PubMed  CAS  Google Scholar 

  • Fesenko, E. E., Kolesnikov, S. S., and Lyubarsky, A. L., 1985, Induction by cyclic GMP of cationic conductance in plasma membrane of rod outer segment, Nature 313: 310–313.

    Article  PubMed  CAS  Google Scholar 

  • Fieber, L. A., and Adams, D. J., 1988, Pharmacological antagonism of ACh and ATP receptorchannels in rat cultured parasympathetic neurons, Soc. Neurosci. Abstr. 14: 639 (Abstr.).

    Google Scholar 

  • Findlay, I., 1988, ATP4- and ATP·Mg inhibit the ATP-sensitive K+ channel of rat ventricular myocytes, Pfluegers Arch. 412: 37–41.

    CAS  Google Scholar 

  • Flitney, F. W., and Singh, J., 1980, Inotropic responses of the frog ventricle to ATP and related changes in endogenous cyclic nucleotides, J. Physiol. (London) 304: 21–42.

    CAS  Google Scholar 

  • Forrester, T., and Williams, C. A., 1977, Release of ATP from isolated heart cells in response to hypoxia, J. Physiol. (London) 268: 371–390.

    CAS  Google Scholar 

  • Forsberg, E. J., Feuerstein, G., Shohami, E., and Pollard, H. B., 1987, Adenosine triphosphate simulates inositol phospholipid metabolism and prostacyclin formation in adrenal medullary endothelial cells by means of P2-purinergic receptors, Proc. Natl. Acad. Sci. USA 84: 5630–5634.

    Article  PubMed  CAS  Google Scholar 

  • Friel, D. D., 1988. An ATP-sensitive conductance in single smooth muscle cells from the rat vas deferens, J. Physiol. (London) 401: 361–380.

    CAS  Google Scholar 

  • Friel, D. D., and Bean, B. P., 1988, Two ATP-activated conductances in bullfrog atrial cells, J. Gen. Physiol. 91: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, K., 1988, Evidence for adenosine triphosphate as an excitatory transmitter in guinea-pig, rabbit, and pig urinary bladder, J. Physiol. (London) 404: 39–52.

    CAS  Google Scholar 

  • Fyffe, R. W., and Perl, E. R., 1984, Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc. Natl. Acad. Sci. USA 81: 6890–6893.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, L., 1986, Extracellular ATP: Effects, sources, and fate, Biochem. J. 233: 309–319.

    PubMed  CAS  Google Scholar 

  • Gratecos, D., and Fischer, E. H., 1974, Adenosine 5’-0(3-thiotriphosphate) in the control of phosphorylase activity, Biochem. Biophys. lies. Commun. 58: 960–967.

    Article  CAS  Google Scholar 

  • Haggblad, J., and Heilbronn, E., 1987, Externally applied adenosine 5’-triphosphate causes inositol triphosphate accumulation in cultured chick myotubes, Neurosci. Lett. 74: 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.

    Article  CAS  Google Scholar 

  • Haynes, L. W., Kay, A. R., and Yau, K.-W., 1986, Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane, Nature 321: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Heppel, L. A., Weisman, G. A., and Friedberg, I., 1985, Permeabilization of transformed cells in culture by external ATP, J. Membr. Biol. 86: 189–196.

    PubMed  CAS  Google Scholar 

  • Hoyle, C. H. V., and Burnstock, G., 1986, Evidence that ATP is a neurotransmitter in the frog heart, Fur. J. Pharmacol. 124: 285–289.

    CAS  Google Scholar 

  • Hume, R. I., and Honig, M. G., 1986, Excitatory action of ATP on embryonic chick muscle, J. Neurosci. 6: 681–690.

    PubMed  CAS  Google Scholar 

  • Igusa, Y., 1988, Adenosine 5’-triphosphate activates acetylcholine receptor channels in cultured Xenopus myotomal muscle cells, J. Physiol. (London) 405: 169–185.

    CAS  Google Scholar 

  • Ishikawa, S., 1985, Actions of ATP and 03-methylene ATP on neuromuscular transmission and smooth muscle membrane of the rabbit and guinea-pig mesenteric arteries, Br. J. Pharmacol. 86: 777–787.

    PubMed  CAS  Google Scholar 

  • Jahr, C. E., and Jessell, T. M., 1983, ATP excites a subpopulation of rat dorsal horn neurons, Nature 304: 730–733.

    Article  PubMed  CAS  Google Scholar 

  • Kasakov, L., and Burnstock, G., 1983, The use of a slowly degradable analog, α,β-methylene ATP, to produce desensitization of the P2-purinoceptor: Effect on nonadrenergic, noncholinergic responses of the guinea-pig urinary bladder, Ear. J. Pharmacol. 86: 291–294.

    Article  Google Scholar 

  • Kennedy, C., and Burnstock, G., 1985, ATP produces vasodilation via P1 purinoceptors and vasoconstriction via P2 purinoceptors in the isolated rabbit central ear artery, Blood Vessels 22: 145–155.

    PubMed  CAS  Google Scholar 

  • Kirsch, G. E., Yatani, A., Codina, J., Birnbaumer, L., and Brown, A. M., 1988, Subunit of Gk activates atrial K+ of chick, rat, and guinea pig, Am. J. Physiol. 254: H1200 - H1205.

    PubMed  CAS  Google Scholar 

  • Kolb, H.-A., and Wakelam, M. J. O., 1983, Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes, Nature 303: 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk, P. G., and Krishtal, O. A., 1977, Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J. Physiol. (London) 270: 545–568.

    CAS  Google Scholar 

  • Krishtal, O. A., and Marchenko, S. M., 1984, ATP-activated ionic permeability in the somata membrane of mammalian sensory neurons, Neirofiziologiya 16: 327–336.

    Google Scholar 

  • Krishtal, O. A., Marchenko, S. M., and Pidoplichko, V. I., 1983, Receptor for ATP in the membrane of mammalian sensory neurones, Neurosci. Lett, 35: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Krishtal, O. A., Marchenko, S. M., and Obukhov, A. G., 1988a, Cationic channels activated by extracellular ATP in rat sensory neurons, Neuroscience 27: 995–1000.

    Article  PubMed  CAS  Google Scholar 

  • Krishtal, O. A., Marchenko, S. M., Obukhov, A. G., and Volkova, T. M., 1988b, Receptors for ATP in rat sensory neurons: The structure-function relationship for ligands, Br. J. Pharmacol. 95: 1057–1062.

    PubMed  CAS  Google Scholar 

  • Krishtal, O. A., Osipchuk, Y. V., and Vrublevsky, S. V., 1988b, Properties of glycine-activated conductances in rat brain neurones, Neurosci. Lett. 84: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Kugelgen, I. V., and Starke, K., 1985, Noradrenaline and adenosine triphosphate as co-transmitters of neurogenic vasoconstriction in rabbit mesenteric artery, J. Physiol. (London) 367: 435–455.

    Google Scholar 

  • Legssyer, A., Poggio, J., Renard, D., and Vassort, G., 1988, ATP and other adenine compounds increase mechanical activity and inositol triphosphate production in the rat heart, J. Physiol. (London) 401: 185–200.

    CAS  Google Scholar 

  • Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J., and Clapham, D. E., 1987, The (3y subunits of GTP-binding proteins activate the muscarinic K channel in heart, Nature 325: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, I., Dascal, N., Cohen, S., and Lass, Y., 1986, ATP-evoked membrane responses in Xenopus oocytes, Pfluegers Arch. 406: 158–162.

    Article  CAS  Google Scholar 

  • MacKenzie, I., Kirkpatrick, K. A., and Burnstock, G., 1988, Comparative study of the actions of AP5A and a,13-methylene ATP on nonadrenergic, noncholinergic excitation in the guinea-pig vas deferens, Br. J. Pharmacol. 94: 699–706.

    PubMed  CAS  Google Scholar 

  • Magazanik, L. G., and Vyskocil, F., 1970, Dependence of acetycholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium, J. Physiol. (London) 210: 507–518.

    CAS  Google Scholar 

  • Matthews, G., and Watanabe, S.-I., 1988, Activation of single ion channels from toad rod inner segments by cyclic GIVíP: Concentration-dependence, J. Physiol. (London) 403: 389–405.

    CAS  Google Scholar 

  • Menini, A., Rispoli, G., and Torre, V., 1988, The ionic selectivity of the light-sensitive current in isolated rods of the tiger salamander, J. Physiol. (London) 402: 279–300.

    CAS  Google Scholar 

  • Nakazawa, K., and Matsuki, N., 1987, Adenosine triphosphate-activated inward current of isolated smooth muscle cells from rat vas deferens, Pfluegers Arch. 409: 644–646.

    Article  CAS  Google Scholar 

  • Niedergerke, R., and Page, S., 1981, Two physiological agents that appear to facilitate calcium discharge from the sarcoplasmic reticulum in frog heart cells: Adrenalin and ATP, Proc. R. Soc. London Ser. B 213: 325–344.

    Article  CAS  Google Scholar 

  • Ninomiya, J. G., and Suzuki, M., 1983, Electrical responses of smooth muscle cells of the mouse uterus to adenosine triphosphate, J. Physiol. (London) 342: 499–515.

    CAS  Google Scholar 

  • Noma, A., 1983, ATP-regulated K+ channels in cardiac muscle, Nature 305: 147–148.

    Article  PubMed  CAS  Google Scholar 

  • Okajima, F., Tokumitsu, Y., Kondo, Y., and Ui, M., 1987, P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol triphosphate in rat hepatocytes, J. Biol. Chem. 262: 13483–13490.

    PubMed  CAS  Google Scholar 

  • Osa, T., and Maruta, K., 1987, The mechanical response of rat myometrium to adenosine triphosphate in Ca-free solution, Jpn. J. Physiol. 37: 515–531.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Nathanson, N. M., and Hille, B., 1985, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature 317: 536–538.

    Article  PubMed  CAS  Google Scholar 

  • Phaneuf, S., Berta, P., Casnova, J., and Cavadore, J. C., 1987, ATP stimulates inositol phosphate accumulation and calcium mobilization in primary culture of rat aortic myocytes, Biochem. Biophys. Res. Commun. 143: 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Salt, T. E., and Hill, R. G., 1983, Excitation of single sensory neurones in the rat caudal trigeminal nucleus by iontophoretically applied adenosine 5’-triphosphate, Neurosci. Lett. 35: 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, V. K., and Sheu, S. S., 1986, Micromolar extracellular ATP increases intracellular calcium concentrations in isolated rat ventricular myocytes, Biophys. J. 49: 351A (Abstr.).

    Google Scholar 

  • Sneddon, P., and Burnstock, G., 1984, Inhibition of excitatory junction potentials in guinea pig vas deferens by α,β-methylene ATP: Further evidence for ATP and noradrenaline as co-transmitters, Eur. J. Pharmacol. 100: 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Sneddon, P., and Burnstock, G., 1985, ATP as co-transmitter in rat tail artery, Eur. J. Pharmacol. 106: 149–152.

    Article  Google Scholar 

  • Sneddon, P., and Westfall, D. P., 1984, Pharmacological evidence that adenosine triphosphate and noradrenaline are cotransmitters in the guinea-pig vas deferens, J. Physiol. (London) 347: 561–580.

    CAS  Google Scholar 

  • Sneddon, P., Westfall, D. P., and Fedan, J. S., 1982, Cotransmitters in the motor nerves of the guinea-pig vas deferens: Electrophysiological evidence, Science 218: 693–695.

    Article  PubMed  CAS  Google Scholar 

  • Stanfield, P. R., 1987, Nucleotides such as ATP may control the activity of ion channels, Trends Neurosci. 10: 335–339.

    Article  CAS  Google Scholar 

  • Stone, T. W., 1981, Physiological roles for adenosine and adenosine 5’-triphosphate in the nervous system, Neuroscience 6: 523–555.

    Article  PubMed  CAS  Google Scholar 

  • Su, C., 1983, Purinergic neurotransmission and neuromodulation, Annu. Rev. Pharmacol. Toxicol. 23: 397–411.

    Article  PubMed  CAS  Google Scholar 

  • Sung, S.-S. J., Young, J. D.-E., Origlio, A. M., Heiple, J. M., Kaback, H. R., and Silverstein, S. C., 1985, Extracellular ATP perturbs transmembrane ion fluxes, elevates cytosolic [Ca2], and inhibits phagocytosis in mouse macrophages, J. Biol. Chem. 260: 13442–13449.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., 1985, Electrical responses of smooth muscle cells of the rabbit ear artery to adenosine triphosphate, J. Physiol. (London) 359: 401–415.

    CAS  Google Scholar 

  • Tsien, R. Y., 1980, New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures, Biochemistry 19: 2396–2404.

    Article  PubMed  CAS  Google Scholar 

  • Vesprille, A., and Van Duyn, C. D., 1966, The negative chronotropic effect of adenine derivatives and acetylcholine on frog and rat hearts, Pfluegers Arch. 292: 288–296.

    Article  Google Scholar 

  • Walaas, E., 1958, Stability constants of metal complexes with mononucleotides, Acta Chem. Scand. 12: 528–536.

    Article  CAS  Google Scholar 

  • Welford, L. A., and Anderson, W. H., 1988, Purine receptors and guinea-pig trachea: Evidence for a direct action of ATP, Br. J. Pharmacol. 95: 689–694.

    PubMed  CAS  Google Scholar 

  • Yatani, A., Goto, M., and Tsuda, Y., 1978, Nature of catecholamine-like actions of ATP and other energy-rich nucleotides on the bullfrog atrial muscle, Jun. J. Physiol. 28: 47–61.

    CAS  Google Scholar 

  • Yatani, A., Tsuda, Y., Akaike, N., and Brown, A. M., 1982, Nanomolar concentrations of extracellular ATP activate membrane Ca channels in snail neurones, Nature 296: 169–171.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1982, Single Ca2+-activated nonselective cation channels in neuroblastoma, Nature 296: 357–359.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, A. L., and Baylor, D. A., 1986, Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores, Nature 321: 70–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Bean, B.P., Friel, D.D. (1990). ATP-Activated Channels in Excitable Cells. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7305-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7305-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7307-4

  • Online ISBN: 978-1-4615-7305-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics