Skip to main content
Book cover

Ion Channels pp 251–282Cite as

The Amiloride-Blockable Sodium Channel of Epithelial Tissue

  • Chapter

Abstract

In many epithelial tissues which are characterized by very high trans-epithelial resistance, a major component of the permeability of the lumen-facing or apical membrane is a conductance which is selective for Na+over other cations and can be specifically blocked by low concentrations of the potassium-sparing diuretic amiloride (see Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramcheck, F. J., Van Driessche, W., and Helman, S. I., 1985, Autoregulation of apical membrane Na+permeability of tight epithelia: Noise analysis with amiloride and CGS 4270, J. Gen. Physiol. 85:555–582.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., 1975, Potassium pores of nerve and muscle membranes, in: Membranes, Vol. 3 (G. Eisenman, ed.), pp. 325–358, Dekker, New York.

    Google Scholar 

  • Baxendale, L. M., and Helman, S. I., 1986, A three-state model for regulation of apical membrane Na+transport of epithelial cells, Fed. Proc. 45:516.

    Google Scholar 

  • Benos, D. J., 1982, Amiloride: A molecular probe of sodium transport in tissues and cells, Am. J. Physiol. 242:C131–C145.

    PubMed  CAS  Google Scholar 

  • Benos, D. J., Simon, S. A., Mandel, L. J., and Cala, P. M., 1976, Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes, J. Gen.Physiol 68:43–63.

    CAS  Google Scholar 

  • Benos, D. J., Mandel, L. J., and Balaban, R. S., 1979, On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia, J. Gen. Physiol. 73:307–326.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, P. J., 1968, Amiloride: A potent inhibitor of sodium transport across the toad bladder, J. Physiol. (London) 195:317–330.

    CAS  Google Scholar 

  • Biber, T. U. L., 1971, Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin, J. Gen. Physiol. 58:131–144.

    Article  PubMed  CAS  Google Scholar 

  • Biber, T. U. L., and Curran, P. F., 1970, Direct measurement of uptake of sodium at the outer surface of the frog skin, J. Gen. Physiol. 56:83–99.

    Article  PubMed  CAS  Google Scholar 

  • Biber, T. U. L., Chez, R. A., and Curran, P. F., 1966, Na transport across frog skin at low external Na concentration, J. Gen. Physiol. 49:1161–1176.

    Article  PubMed  CAS  Google Scholar 

  • Blazer-Yost, B., Geheb, M., and Cox, M., 1983, Characterization of aldosterone-induced proteins (AIP) in renal epithelia, J. Gen. Physiol. 82:24a–25a.

    Google Scholar 

  • Cereijido, M., Herrera, F. C., Flanigan, W. J., and Curran, P. F., 1964, The influence of Na concentration on Na transport across frog skin, J. Gen. Physiol. 47:879–893.

    Article  PubMed  CAS  Google Scholar 

  • Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A., and Sabatini, D. D., 1978, Polarized monolayers formed by epithelial cells on a permeable and translucent support, J. Cell. Biol. 77:853–880.

    Article  PubMed  CAS  Google Scholar 

  • Chase, H. S., and Al-Awqati, Q., 1983, Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder: Studies using a fast-reaction apparatus, J. Gen. Physiol. 81:643–665.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert, A. W., 1976, Importance of guanidinium groups for blocking sodium channels in epithelia, Mol. Pharmacol. 12:945–957.

    PubMed  CAS  Google Scholar 

  • Cuthbert, A. W., 1981, Sodium entry step in transporting epithelia: Results of ligand-binding studies, In: Ion Transportby Epithelia(S. G. Schultz, ed.), pp. 181–196, Raven Press, New York.

    Google Scholar 

  • Cuthbert, A. W., and Shum, W. K., 1976, Characteristics of the entry process for sodium in transporting epithelia as revealed with amiloride, J. Physiol. (London) 255:587–604.

    CAS  Google Scholar 

  • Delong, J., and Civan, M. M., 1984, Apical sodium entry in split frog skin, current-voltage relationship, J. Membr. Biol. 82:25–40.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, D. C., 1981, Intracellular sodium activity and sodium transport in rabbit urinary bladder, J. Physiol. (London) 316:527–544.

    CAS  Google Scholar 

  • Eaton, D. C., and Brodwick, M. S., 1980, Effects of internal Ba++on the K+conductance of squid axon, J. Gen. Physiol. 75:727–750.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, W., Hviid Larsen, E., and Lindemann, B., 1977, Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin, J. Physiol. (London) 267:137–166.

    CAS  Google Scholar 

  • Garty, H., and Asher, C., 1985, Ca2 +-dependent, temperature-sensitive regulation of Na+channels in tight epithelia: A study using membrane vesicles, J. Biol. Chem. 260:8330–8335.

    PubMed  CAS  Google Scholar 

  • Garty, H., and Edelman, I. S., 1983, Amiloride-sensitive trypsinization of apical sodium channels: Analysis of hormonal regulation of sodium transport in toad bladder, J. Gen. Physiol. 81:785–803.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, D. B. P., Wong, M., and Rasmussen, H., 1975, Aldosterone-induced membrane phospholipid fatty acid metabolism in toad urinary bladder, Biochemistry 14:2803–2809.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391:85–100.

    Article  CAS  Google Scholar 

  • Hamilton, K. L., and Eaton, D. C., 1985, Single-channel recordings from amiloride-sensitive epithelial sodium channel, Am. J. Physiol. 249:C200–C207.

    PubMed  CAS  Google Scholar 

  • Hamilton, K. L., and Eaton, D. C., 1986, Single channel recordings from two types of amiloride-sensitive epithelial N+channels, J. Mol. Biochem. 6:149–171.

    CAS  Google Scholar 

  • Hamilton, K. L., and Eaton, D. C., 1986, Regulation of single sodium channels in renal tissue: A role of sodium homeostasis, Fed. Proc. 45:2713–2717.

    PubMed  CAS  Google Scholar 

  • Hamilton, K. L., Good, D., and Eaton, D. C., 1986, Single sodium channel events in apical membrane of rat cortical duct (CCD), KidneyInt. 29:397.

    Google Scholar 

  • Handler, J. S., and Orloff, J., 1973, The mechanism of action of antidiuretic hormone, in: Handbook of Physiology, Section 8, pp. 791–814, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Handler, J. S., Perkins, F. M., and Johnson, J. P., 1980, Studies of renal cell function using cell culture techniques, Am. J. Physiol. 238:F1–F9.

    PubMed  CAS  Google Scholar 

  • Handler, J. S., Perkins, F. M., and Johnson, J. P., 1981, Hormone effects on transport in cultured epithelia with high electrical resistance, Am. J. Physiol. 240:C103–C105.

    PubMed  CAS  Google Scholar 

  • Helman, S. I., Cox, T. C., and Van Driessche, W., 1983, Hormonal control of apical membrane Na+transport in epithelia, J. Gen. Physiol. 82:201–220.

    Article  PubMed  CAS  Google Scholar 

  • Helman, S. I., Koeppen, B. M., Beyenbach, K. W., and Baxendale, L. M., 1985, Patch clamp studies of apical membranes of renal cortical collecting ducts, Pfluegers Arch. 405(Suppl. 1):S71–S76.

    Google Scholar 

  • Helman, S. I., Baxendale, L. M., Sariban-Sohraby, S., and Benos, D. J., 1986, Blocker-induced noise of Na +channels in cultured A6 epithelia, Fed. Proc. 45:516.

    Google Scholar 

  • Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride ions on membrane potential of single muscle fibres, J. Physiol. (London) 148:127–160.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, The components of membrane conductance in the giant axon of Loligo, J. Physiol. (London) 116:473–496.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108:37–77.

    CAS  Google Scholar 

  • Johnson, J. P., Steele, R. E., Perkins, F. M., Wade, J. B., Preston, A. S., Green, S. W., and Handler, J. S., 1981, Epithelial organization and hormone sensitivity of toad urinary bladder cells in culture, Am. J. Physiol. 241:F129–F138.

    PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen, V., and Ussing, H. H., 1958, The nature of the frog skin potential, ActaPhysiol. Scand. 42:298–308.

    Article  CAS  Google Scholar 

  • Lewis, S. A., and DeMoura, J. L. C., 1984, Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: An electrophysiological study, J. Membr. Biol. 82:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., Ailes, W. P., and Clausen, C., 1986, Endogenous enzymes hydrolyze epithelial Na+channels, Biophys. J. 49:157a.

    Google Scholar 

  • Lien, E. L., Goodman, D. B., and Rasmussen, H., 1976, Effects of inhibitors of protein and RNA synthesis on aldosterone-stimulated changes in phospholipid fatty acid metabolism in the toad urinary bladder, Biochim. Biophys. Acta 421:210–217.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, B., 1984, Fluctuation analysis of sodium channels in epithelia, Annu. Rev. Physiol. 46:497–515.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, B., and Van Driessche, W., 1977, Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover, Science 195:292–294.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D. D. F., Lewis, S. A., Ifshin, M. S., and Diamond, J. M., 1983, Turnover, membrane insertion and degradation of sodium channels in rabbit urinary bladder, Science 221:1288–1290.

    Article  PubMed  CAS  Google Scholar 

  • MacKnight, A. D. C., DiBona, D. R., and Leaf, A., 1980, Sodium transport across toad urinary bladder: A model “tight” epithelium, Physiol. Rev. 60:615–715.

    PubMed  CAS  Google Scholar 

  • Misfeldt, D. S., Hamamoto, S. T., and Pitelka, D. R., 1976, Transepithelial transport in cell culture, Proc. Natl. Acad. Sci. USA 73:1212–1216.

    Article  PubMed  CAS  Google Scholar 

  • Mullen, T. L., and Biber, T. U. L., 1978, Sodium uptake across the outer surface of the frog skin, in: Membrane Transport Processes, Vol. 1 (J. F. Hoffman, ed.), pp. 199–212, Raven Press, New York.

    Google Scholar 

  • Olans, L., Sariban-Sohraby, S., and Benos, D. f., 1984, Saturation behavior of single, amiloride sensitive Na+ channels in planar lipid bilayers, Biophys. J. 46:831–835.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. G., 1984, Voltage-dependent block by amiloride and other monovalent cations of apical Na +channels in the toad urinary bladder, J. Membr. Biol. 80:153–165.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. G., 1985, Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H, J. Membr. Biol. 83:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. G., and Edelman, I. S., 1981, Control of apical sodium permeability in the toad urinary bladder by aldosterone, Ann. N.Y. Acad. Sci. 372:11–14.

    Article  Google Scholar 

  • Palmer, L. G., and Frindt, G., 1986a, Regulation of apical Na+channels in rat cortical collecting tubule by cytoplasmic pH, Fed. Proc. 45:1010.

    Google Scholar 

  • Palmer, L. G., and Frindt, G., 1986b, Amiloride sensitive Na channels from the apical membrane of the rat cortical collecting tubule, Proc. Natl. Acad. Sci. USA 83:2767–2770.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. G., Edelman, I. S., and Lindemann, B., 1980, Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism, J. Membr. Biol. 57:59–71.

    Article  PubMed  CAS  Google Scholar 

  • Rafferty, K. A., 1969, Mass culture of amphibian cells, in: Biology of Amphibian Tumors(M. Mizell, ed.), pp. 52–81, Springer-Verlag, Berlin.

    Google Scholar 

  • Salako, L. A., and Smith, A. J., 1970, Changes in sodium pool and kinetics of sodium transport in frog skin produced by amiloride,Br. J. Pharmacol. 39:99–109.

    PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., and Benos, D. J., 1986a, The amiloride-sensitive sodium channel, Am. J. Physiol. 250:C175–C190.

    PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., and Benos, D. J., 1986b, The amiloride-binding protein from cultured A6 epithelial cells: Partial purification and characterization, Biophys. J. 49:398a.

    Google Scholar 

  • Sariban-Sohraby, S., Burg, M. B., and Turner, R. J., 1983, Apical sodium uptake in toad kidney epithelial cell line A6, Am. J. Physiol. 245:C167–C171.

    PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., Burg, M. B., and Turner, R. J., 1984a, Aldosterone-stimulated sodium uptake by apical membrane vesicles from A6 cells, J. Biol. Chem. 259:11221–11225.

    PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., Burg, M. S., Wiesmann, W. P., Chiang, P. K., and Johnson, J. P., 1984b, Methylation increases sodium transport into A6 apical membrane vesicles: Possible mode of aldosterone action, Science 225:745–746.

    Article  PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984c, Amiloride-sensitive epithelial Na+channels reconstituted into planar lipid bilayer membranes, Nature 308:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, S., 1981, Homocellular regulatory mechanism in sodium transporting epithelia: Avoidance of extinction by “flush-through,” Am. J. Physiol. 241:F579–F590.

    PubMed  CAS  Google Scholar 

  • Sudou, K., and Hoshi, T., 1977, Mode of action of amiloride in toad urinary bladder: An electrophysiological study of the drug action on sodium permeability of the mucosal border, J. Membr. Biol. 32:115–132.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J., Abramcheck, F. J., Van Driessche, W., and Helman, S. I., 1985, Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin, Am. J. Physiol. 249:C421–429.

    PubMed  CAS  Google Scholar 

  • Taylor, A., and Windhager, E. E., 1979, Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport, Am. J. Physiol. 236:F505–F512.

    PubMed  CAS  Google Scholar 

  • Thompson, S. M., Suzuki, Y., and Schultz, S. G., 1982, The electrophysiology of rabbit descending colon: Instantaneous transepithelial current-voltage relations of the Na-entry mechanism, J. Membr. Biol. 66:41–54.

    Article  PubMed  CAS  Google Scholar 

  • Ussing, H. H., and Zerahn, K., 1951, Active transport of sodium as the source of electric current in short-circuited isolated frog skin, Acta Physiol. Scand. 23:110–127.

    Article  PubMed  CAS  Google Scholar 

  • Van Driessche, W., and Lindemann, B., 1979, Concentration dependence of currents through single-sodium-selective pores in frog skin, Nature 282:519–520.

    Article  PubMed  Google Scholar 

  • Wade, J. B., Stetson, D. L., and Lewis, S. A., 1981, ADH action: Evidence for a membrane shuttle mechanism, Ann. N.Y. Acad. Sci. 372:106–117.

    Article  PubMed  CAS  Google Scholar 

  • Wiesmann, W. P., Johnson, J. P., Miura, G. A., and Chiang, P. K., 1985, Aldosterone-stimulated transmethylations are linked to sodium transport, Am. J. Physiol. 248:F43–F47.

    PubMed  CAS  Google Scholar 

  • Yanase, M., and Handler, J. S., 1986, Activators of protein kinase C inhibit sodium transport in A6 epithelia, Am. J. Physiol. 250:C517–C522.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Eaton, D.C., Hamilton, K.L. (1988). The Amiloride-Blockable Sodium Channel of Epithelial Tissue. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7302-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7302-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7304-3

  • Online ISBN: 978-1-4615-7302-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics