Morphological Basis for Fluid Transport Through and Around Ependymal, Arachnoidal, and Glial Cells

  • Shinya Kida
  • Roy O. Weller
Part of the Principles of Pediatric Neurosurgery book series (PRINCPEDIATR)


Cerebrospinal fluid in man is produced by the choroid plexus in the ventricular system at the rate of 500 ml a day; the total cerebrospinal fluid (CSF) is some 150 ml.1 Approximately 20% of the CSF is in the ventricles, but the majority is in the subarachnoid space over the surface of the brain and the spinal cord. There is also interstitial fluid within the extracellular spaces of the gray and white matter of the brain and spinal cord. Such extracellular fluid may be greatly increased in amount when there is cytotoxic and vasogenic cerebral edema associated with trauma, infection, or infarction of the brain or around a tumor.1–3 Extracellular fluid may also be increased in the periventricular white matter in acute hydrocephalus due to the insudation of CSF from the ventricles.4


Subarachnoid Space Venous Sinus Superior Sagittal Sinus Perivascular Space Periventricular White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davson H, Welch K, Segal MB: Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh; 1987.Google Scholar
  2. 2.
    Reulen H-J, Huber P, Ito U, et al.: Peritumoral brain edema. In: Long D (ed.). Advances in Neurology, Vol. 52. Raven Press, New York; 1990; 307–315.Google Scholar
  3. 3.
    Weller RO: Developmental, neonatal and paediatric neuropathology. In: Weller RO (ed.). Systemic Pathology: Nervous System, Muscle and Eyes, Third ed., Vol. 4. Churchill Livingstone, Edinburgh; 1990; 309–359.Google Scholar
  4. 4.
    Weller RO, Wisniewski H: Histological and ultrastructural changes in experimental hydrocephalus. I: adult rabbit. Brain 92:819–828, 1969.PubMedCrossRefGoogle Scholar
  5. 5.
    Mortensen OA, Sullivan WE: The cerebro-spinal fluid and the cervical lymph nodes. Anat Rec 56:359–363, 1933.CrossRefGoogle Scholar
  6. 6.
    Erlich SS, McComb JG, Hyman MS, Weiss MH: Ultrastructure of the orbital pathway for cerebrospinal fluid drainage in rabbits. J Neurosurg 70:926–931, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Bradbury MWB, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:329–336, 1981.Google Scholar
  8. 8.
    Cserr HF, Cooper DN, Suri PK, Patlak CS: Efflux of radiolabelled polyethylene glycols and albumin from rat brain. Am J Physiol 240:319–328, 1981.Google Scholar
  9. 9.
    Cserr HF, Ostrach LH: Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45:50–60, 1974.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83:233–239, 1992. (submitted).PubMedCrossRefGoogle Scholar
  11. 11.
    Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of the rat brain. Am J Physiol 246:835–844, 1984.Google Scholar
  12. 12.
    Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Alcolado R, Weiler RO, Parrish EP, Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17, 1988.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang ET, Inman CBE, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123, 1990.PubMedGoogle Scholar
  15. 15.
    Kaplan GP, Hartman BK, Creveling CR: Localization of catechol-O-methyltransferase in the leptomeninges, choroid plexus and ciliary epithelium: implication for the separation of central and peripheral catechols. Brain Res 204:353–360, 1981.PubMedCrossRefGoogle Scholar
  16. 16.
    Feuer D, Weller RO: Barrier functions of the leptomeninges: a study of normal meninges and meningiomas in tissue culture. Neuropathol Appl Neurobiol 17:391–405, 1991.CrossRefGoogle Scholar
  17. 17.
    Nicholas DS, Weller RO: The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282, 1988.PubMedCrossRefGoogle Scholar
  18. 18.
    Wislocki GB, Putnam TJ: Absorption from the ventricles in experimentally produced internal hydrocephalus. Am J Anat 29:313–320, 1921.CrossRefGoogle Scholar
  19. 19.
    Reulen HJ, Tsuyumu M, Tack A, et al.: Clearance of edema fluid into the cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg 48:754–764, 1978.PubMedCrossRefGoogle Scholar
  20. 20.
    Weiler RO, Shulman K: Infantile hydrocephalus: clinical, histological and ultrastructural study of brain damage. J Neurosurg 36:255–265, 1972.CrossRefGoogle Scholar
  21. 21.
    Weiler RO, Wisniewski H, Shulman K, Terry RD: Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30:613–627, 1971.CrossRefGoogle Scholar
  22. 22.
    Erlich SS, McComb JG, Hyman S, Weiss MH: Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64:466–473, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamazumi H: Infiltration of Indian ink from subarachnoid space to nasal mucosa along olfactory nerves in rabbits. J Otolaryngol Jpn 92:608–616, 1989.Google Scholar
  24. 24.
    Harling-Berg C, Knopf PM, Merriam J, Cserr HF: Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J Neuroimmunol 25:185–193, 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Hochwald GM, Wald A, Malhan C: The sink action or cerebrospinal fluid volume flow. Effect on brain water content. Arch Neurol 33:339–344, 1976.PubMedCrossRefGoogle Scholar
  26. 26.
    Key A, Retzius G: Studien in der Anatomie des Nerven Systems und des Bindegewebes Stockholm 1876.Google Scholar
  27. 27.
    Weed LH: The absorption of cerebrospinal fluid into the venous system. Am J Anat 31:191–221, 1923.CrossRefGoogle Scholar
  28. 28.
    Kida S, Yamashima T, Kubota T, et al.: A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435, 1988.PubMedCrossRefGoogle Scholar
  29. 29.
    Upton ML, Weller RO: The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63: 867–875, 1985.PubMedCrossRefGoogle Scholar
  30. 30.
    Clark WE Le Gros: On the pacchionian bodies. J Anat 55:40–48, 1920.Google Scholar
  31. 31.
    Turner L: The structure of arachnoid granulations with observations on their physiological and pathological significance. Ann R Coll Surg Engl 29:237–264, 1961.PubMedGoogle Scholar
  32. 32.
    Shabo AL, Maxwell DS: The morphology of the arachnoid villi: a light and electron microscopic study in the monkey. J Neurosurg 29:451–463, 1968.CrossRefGoogle Scholar
  33. 33.
    Nabeshima S, Reese TS, Landis DMD, et al.: Junctions in the meninges and marginal glia. J Comp Neurol 164:127–170, 1975.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamashima T: Functional ultrastructure of cerebrospinal fluid drainage channels in human arachnoid villi. Neurosurgery 22:633–641, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    Alksne JF, Lovings ET: The role of arachnoid villus in the removal of red blood cells from the subarachnoid space. An electron microscope study in the dog. J Neurosurg 36:192–200, 1972.PubMedCrossRefGoogle Scholar
  36. 36.
    Ellington E, Margolis G: Blocks of arachnoid villus by subarachnoid hemorrhage. J Neurosurg 30:651–657, 1969.PubMedCrossRefGoogle Scholar
  37. 37.
    Torvik A, Bhatia R, Murthy VS: Transitory block of the arachnoid granulations following subarachnoid haemorrhage. A post mortem study. Acta Neurochir 41:137–146, 1978.PubMedCrossRefGoogle Scholar
  38. 38.
    Alksne JF, Lovings ET: Functional ultrastructure of the arachnoid villus. Arch Neurol 27:371–377, 1972.PubMedCrossRefGoogle Scholar
  39. 39.
    Tripathi BJ, Tripathi RC: Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol (Lond) 239:195–206, 1974.Google Scholar
  40. 40.
    d’Avella D, Cicciarello R, Albiero F, et al.: Scanning electron microscope study of human arachnoid villi. J Neurosurg 59:620–626, 1983.PubMedCrossRefGoogle Scholar
  41. 41.
    Levine JE, Poulishock JT, Becker DP: The morphological correlates of primate cerebrospinal fluid absorption. Brain Res 241:31–41, 1982.PubMedCrossRefGoogle Scholar
  42. 42.
    Jayatilaka ADP: An electron microscopic study of sheep arachnoid granulations. J Anat 99: 635–649, 1965.PubMedGoogle Scholar
  43. 43.
    Gomez DG, Potts DG: The surface characteristics of arachnoid granulations. A scanning electron microscopical study. Arch Neurol 31: 88–93, 1974.PubMedCrossRefGoogle Scholar
  44. 44.
    Weiler RO, Kida S, Zhang ET: Pathways of fluid drainage from the brain—morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Shinya Kida
  • Roy O. Weller

There are no affiliations available

Personalised recommendations