Cytogenesis and Developmental and Functional Anatomy of the Glia and Ependyma

  • Eiichi Tani
Part of the Principles of Pediatric Neurosurgery book series (PRINCPEDIATR)


The central nervous system (CNS) of mammalian embryos is first shown as the neural plate. The lateral edges of the neural plate soon become elevated to form the neural folds, and the depressed region between the folds becomes the neural groove. Further development results in the formation of the neural tube, with a long caudal part (spinal cord) and a broader cephalic portion (brain vesicles). The neural tube is composed of three different zones:1,2 ependymal, mantle, and marginal zones. The ependymal zone borders the lumen of the neural tube and consists of high columnar epithelial cells and large round cells. The round cells are referred to as the germinal cells and develop into neuroblasts, whereas the columnar epithelial cells give rise to spongioblasts. Both the neuroblasts and the spongioblasts migrate to a densely packed nuclear zone, the mantle zone. The marginal zone is the outermost layer of the neural tube and consists of the peripheral processes and axons of the neuroblasts.


Neural Tube Ependymal Cell Radial Glia Neuroepithelial Cell Glial Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    His W: Die Neuroblasten und deren Entstehung im embryonalen Mark. Arch Anat Entwicklungsgesch 1889:249–300, 1889.Google Scholar
  2. 2.
    Hardesty J: On the development and nature of the neuroglia. Am J Anat 3:229–268, 1904.CrossRefGoogle Scholar
  3. 3.
    Schaper A: The earliest differentiation in the central nervous system of vertebrates. Science 5:430–431, 1897.Google Scholar
  4. 4.
    Sauer FC: Mitosis in neural tube. J Comp Neurol. 62:377–405, 1935.CrossRefGoogle Scholar
  5. 5.
    Kershman J. The medulloblast and medulloblastoma. Arch Neurol Psychiatr (Chicago) 40:937–967, 1938.CrossRefGoogle Scholar
  6. 6.
    Overton J: Mitotic pattern in the chick pronephric duct. J Embryol Exp Morphol 7:275–280, 1959.PubMedGoogle Scholar
  7. 7.
    Källén B: Studies on cell proliferation in the brain of chick embryos with special reference to the mesencephalon. Z Anat Entwicklungsgesch. 122:388–401, 1961.PubMedCrossRefGoogle Scholar
  8. 8.
    Langman J, Guerrant RL, Freeman BG: Behavior of neuroepithilial cells during closure of the neural tube. J Comp Neurol 127:399–412, 1966.PubMedCrossRefGoogle Scholar
  9. 9.
    Sauer ME, Walker BE: Radioautographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560, 1959.PubMedCrossRefGoogle Scholar
  10. 10.
    Sidman RL, Miale IL, Feder N: Cell proliferation in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333, 1959.PubMedCrossRefGoogle Scholar
  11. 11.
    Fujita S: Kinetics of cellular proliferation. Exp Cell Res 28:52–60, 1962.PubMedCrossRefGoogle Scholar
  12. 12.
    Källén B, Valmin K: DNA synthesis in the embryonic chick central nervous system. Z Zellforsch Mikrosk Anat. 60:491–496, 1963.CrossRefGoogle Scholar
  13. 13.
    Atlas M, Bond VP: The cell generation cycle of the eleven-day mouse embryo, J Cell Biol 26:19–24, 1965.PubMedCrossRefGoogle Scholar
  14. 14.
    Langman J, Welch GW: Excess vitamin A and development of the cerebral cortex. J Comp Neurol 131:15–25, 1967.PubMedCrossRefGoogle Scholar
  15. 15.
    Duncan D: Electron microscope study of the embryonic neural tube and notochord. Tex Rep Biol Med 15:367–377, 1957.PubMedGoogle Scholar
  16. 16.
    Fujita H, Fujita S: Electron microscopic studies on neuroblast differentiation in the central nervous system of domestic fowl. Z Zellforsch Mikrosk Anat 60:462–478, 1963.Google Scholar
  17. 17.
    Ramón y Cajal S: Histologie du Système Nerveux de l’Homme et des Vertébrés. Maloine, Paris, 1909.Google Scholar
  18. 18.
    Rakic P: Mode of cell migration to the superficial layers of fetal monkey neocortex, J Comp Neurol 145:61–84, 1972.PubMedCrossRefGoogle Scholar
  19. 19.
    del Rio-Hortega P: Microglia. In: Penfield E (ed.). Cytology and Cellular Pathology of the Nervous System, Vol. 2. Hoeber, New York; 1932; 483–534.Google Scholar
  20. 20.
    Antanitus DS, Choi BH, Lapham LW: The demonstration of glial fibrillary acidic protein in the cerebrum of human fetus by indirect immunofluorescence. Brain Res 102:613–616, 1976.CrossRefGoogle Scholar
  21. 21.
    Choi BH: Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Dev Brain Res. 1:249–267, 1981.CrossRefGoogle Scholar
  22. 22.
    Choi BH: Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: a light and electron microscopic immunoperoxidase study. J Neuropathol Exp Neurol 45:408–418, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Choi BH: Developmental events during the early stages of cerebral cortical neurogenesis in man: a correlative light, electron microscopic, immunohistochemical and Golgi study. Acta Neuropathol (Berl) 75:441–447, 1988.CrossRefGoogle Scholar
  24. 24.
    Choi BH, Lapham LW: Radial glia in the human fetal cerebrum: a combined Golgi, electron microscopic and immunofluorescent study. Brain Res 148:295–311, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi BH, Kim RC: Expression of glial fibrillary acidic protein in immature oligodendroglia. Science. 223:407–409, 1984.PubMedCrossRefGoogle Scholar
  26. 26.
    Choi BH: Myelin-forming oligodendrocytes of developing mouse spinal cord: immunocyto-chemical and ultrastructural studies. J Neuropathol Exp Neurol 45:513–524, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Raff MC, Miller R, Noble M: A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303:390–396, 1983.PubMedCrossRefGoogle Scholar
  28. 28.
    Langui D, Delaunoy JP, Chandour MS, et al.: Immunocytochemical demonstration of both carbonic anhydrase isoenzyme II and glial fibrllary acidic protein in some immature rat glial cells in primary culture. Neurosci Lett 60:151–156, 1985.PubMedCrossRefGoogle Scholar
  29. 29.
    Ogawa H, Sato Y, Takeshita I, et al.: Transient expression of glial fibrillary acidic protein in developing oligodendrocytes in vitro. Dev Brain Res 18:133–141, 1985.CrossRefGoogle Scholar
  30. 30.
    Goldman JE, Geier SS, Hirano M: Differentiation of astrocytes and oligodendrocytes from germinal matrix cells in primary culture. J Neurosci 6:52–60, 1986.PubMedGoogle Scholar
  31. 31.
    Levi G, Aloisi F, Wilkin GP: Differentiation of cerebellar bipotential glial precursors into oligodendrocytes in primary culture: developmental profile of surface antigens and mitotic activity, J Neurosci Res 18:407–417, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Trotter J, Schachner M: Cells positive for the 04 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodendrocytes. Dev Brain Rev 46:115–122, 1989.CrossRefGoogle Scholar
  33. 33.
    Horstman E: Die Faserglia des Selachiergehirns. Z Zellforsch Mikrosk Anat 39:588–617, 1954.CrossRefGoogle Scholar
  34. 34.
    Kershman J: Genesis of microglia in human brain. Arch Neurol Psychiat (Chicago) 41:24–50, 1939.CrossRefGoogle Scholar
  35. 35.
    Scheibel ME, Scheibel AB: The inferior olive: a Golgi study. J Comp Neurol 102:77–131, 1955.PubMedCrossRefGoogle Scholar
  36. 36.
    Walberg F: An electron microscopic study of the inferior olive of the cat. J Comp Neurol 120:1–17, 1963.PubMedCrossRefGoogle Scholar
  37. 37.
    del Rio-Hortega P: La neuroglia normal: concepto de neurogliona y angiogliona. Arch Histol Norm Pathol. 1:5–71, 1942.Google Scholar
  38. 38.
    Haug H: Die morphologischen Volumenbeziehungen der einzelnen Strukturanteile an der Hirnrinde und ihre funktionelle Bedeutung. Z Naturwiss Med Grundlagenforsch 1:104–125, 1963.Google Scholar
  39. 39.
    Peters A: The formation and structure of myelin sheaths in the central nervous system. J Biophys Biochem Cytol 8:431–446, 1960.PubMedCrossRefGoogle Scholar
  40. 40.
    Treff WM: Zur Methodik der Zellzählung an subcorticalen Strukturen des menschlichen Gehirns. In: Weibel ER, Elias H (eds.). Quantitative Methoden in der Morphologie. Springer-Verlag, Berlin; 1967; 36–79.Google Scholar
  41. 41.
    Eccles JC, Ito M, Szentágothai J: The Cerebellum as a Neuronal Machine. Springer, New York, 1967, 97, 202-204.CrossRefGoogle Scholar
  42. 42.
    Penfield W: Neuroglia. Normal and pathological. In: Penfield W (ed.). Cytology and Cellular Pathology of the Nervous System, Vol. 2. Hoeber, New York; 1932, 423–479.Google Scholar
  43. 43.
    Raff MC, Abney ER, Cohen J, et al.: Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface ganglioside and growth characteristics. J Neurosci 3:1289–1300, 1983.PubMedGoogle Scholar
  44. 44.
    Raff MC, Abney ER, Miller RH: Two glial cell lineages diverse prenatally in rat optic nerve. Dev Biol. 106:53–60, 1984.PubMedCrossRefGoogle Scholar
  45. 45.
    Eisenbarth GS, Walsh FS, Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci USA 76:4913–4927, 1979.PubMedCrossRefGoogle Scholar
  46. 46.
    Miller RH, David S, Patel R, et al.: A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocyte lineages. Dev Biol 111:35–41, 1985.PubMedCrossRefGoogle Scholar
  47. 47.
    Miller RH, Fulton BP, Raff MC: A novel type of glial cell associated with nodes of Ranvier in rat optic nerve. Eur J Neurosci 1:172–180, 1989.PubMedCrossRefGoogle Scholar
  48. 48.
    Massa PT, Mugnaini E: Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: a freeze-fracture study. Neuroscience 7:523–538, 1982.PubMedCrossRefGoogle Scholar
  49. 49.
    Waxman SG, Black JA: Freeze fracture ultra-structure of the perinodal astrocyte and associated glial junctions. Brain Res 308:77–87, 1984.PubMedCrossRefGoogle Scholar
  50. 50.
    Peters A, Palay SL, Webster HdeF: The neuroglial cells. In: The Fine Structure of the Nervous System: The Neurons and Supporting Cells. Saunders, Philadelphia; 1976; 231–263.Google Scholar
  51. 51.
    Mugnaini E, Walberg F III: Ultrastructure of neuroglia. Ergeb Anat Entwicklungsgesch 37:194–236, 1964.PubMedGoogle Scholar
  52. 52.
    Maxwell DS, Kruger L: The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J Cell Biol 25:141–157, 1965.PubMedCrossRefGoogle Scholar
  53. 53.
    Dahl HA: Fine structure of cilia in rat cerebral cortex. Z Zellforsch Mikrosk Anat 60:369–386, 1963.PubMedCrossRefGoogle Scholar
  54. 54.
    Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677, 1969.PubMedCrossRefGoogle Scholar
  55. 55.
    Kuffler SW, Nicholls JG: The physiology of neuroglial cells. Ergeb Physiol 57:1–90, 1966.PubMedCrossRefGoogle Scholar
  56. 56.
    Wolff J: Die Astroglia im Gewebsverband des Gehirns. Acta Neuropathol (Berl) Suppl IV: 33–39, 1968.Google Scholar
  57. 57.
    Tani E, Nishiura M, Higashi N: Freeze-fracture studies of gap junctions of normal and neoplastic astrocytes. Acta Neuropathol (Berl) 26:127–138, 1973.CrossRefGoogle Scholar
  58. 58.
    Brownson RH: Perineuronal satellite cells in motor cortex of aging brains. J Neuropathol Exp Neurol 14:424–432, 1955.PubMedGoogle Scholar
  59. 59.
    Brownson RH: Perineuronal satellite cells in motor cortex of aging brains. J Neuropathol Exp Neurol 15:190–195, 1956.PubMedCrossRefGoogle Scholar
  60. 60.
    Mori S, Leblond CP: Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J Comp Neurol 139:1–28, 1970.PubMedCrossRefGoogle Scholar
  61. 61.
    Griffin R, Illis LS, Mitchell J: Identification of neuroglia by light and electronmicroscopy. Acta Neuropathol (Bed) 22:7–12, 1972.CrossRefGoogle Scholar
  62. 62.
    Bunge RP, Bunge MB, Ris H: Electron microscopic study of demyelination in an experimentally induced lesion in adult cat spinal cord. J Biophys Biochem Cytol 7:685–696, 1960.PubMedCrossRefGoogle Scholar
  63. 63.
    Bunge MB, Bunge RP, Ris H: Ultrastructural study of remyelination in an experimental lesion in adult spinal cord. J Biophys Biochem Cytol 10:67–94, 1961.PubMedCrossRefGoogle Scholar
  64. 64.
    Hirano A, Dembitzer HM: A structural analysis of the myelin sheath in the central nervous system. J Cell Biol 34:555–567, 1967.PubMedCrossRefGoogle Scholar
  65. 65.
    Tani E, Ikeda K, Nishiura M: Freeze-etching images of central myelinated nerve fibers. J Neurocytol 2:305–314, 1973.PubMedCrossRefGoogle Scholar
  66. 66.
    Tani E, Itagaki T, Nakano M: Tight junctions of oligodendrocytes. Cell Tissue Res 184:139–142, 1977.PubMedCrossRefGoogle Scholar
  67. 67.
    Fleischhauer K: Über die Feinstruktur der Faserglia. Z Zellforsch Mikrosk Anat 47:548–556, 1958.PubMedCrossRefGoogle Scholar
  68. 68.
    Tennyson VM, Pappas GD: Electron microscope study of ependymal cells of fetal, early postnatal and adult rabbits. Z Zellforsch Mikrosk Anat 56:595–618, 1962.PubMedCrossRefGoogle Scholar
  69. 69.
    Brightman MW, Palay SL: The fine structure of ependyma in the brain of the rat. J Cell Biol 19:415–439, 1963.PubMedCrossRefGoogle Scholar
  70. 70.
    Klinkerfuss GH: An electron microscopic study of the ependyma and subependymal glia of the lateral ventricle of the cat. Am J Anat 115:71–97, 1964.PubMedCrossRefGoogle Scholar
  71. 71.
    Tani E, Ikeda K, Nishiura M, Higashi N: Specialized intercellular junctions and ciliary necklace in rat brain. Cell Tissue Res 151:57–68, 1974.PubMedCrossRefGoogle Scholar
  72. 72.
    Leonhardt H: Über ependymale Tanycyten des 3. Ventrikels beim Kaninchen in elektronenmikroskopischer Betrachtung. Z Zellforsch Mikrosk Anat 74:1–11, 1966.CrossRefGoogle Scholar
  73. 73.
    Millhouse OE: Lining of the third ventricle in the rat. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds.). Brain Endocrine Interaction II: The Ventricular System in Neuroendocrine Mechanisms. Karger, Basel; 1975; 3–18.Google Scholar
  74. 74.
    Bruni JE, Montemurro DG, Clattenburg RE, et al.: A scanning electron microscopic study of the ependymal surface of the third ventricles of the rabbit, rat, mouse, and human brain. Anat Rec 174:407–420, 1972.PubMedCrossRefGoogle Scholar
  75. 75.
    Leonhardt H: Zur Frage einer intraventrikulären Neurosekretion. Eine bisher unbekannte nervöse Struktur im IV. Ventrikel des Kaninchens. Z Zellforsch Mikrosk Anat 79:172–184, 1967.PubMedCrossRefGoogle Scholar
  76. 76.
    Leonhardt H: Intraventrikuläre markhaltige Nervenfasern nahe der Apertura lateralis ventriculi quarti des Kaninchengehirns. Z Zellforsch Mikrosk Anat 84:1–8, 1968.PubMedCrossRefGoogle Scholar
  77. 77.
    Leonhardt H: Subependymale Basalmembran-labyrinthe im Hinterhorn des Seitenventrikels des Kaninchengehirns. Zur Frage des Liquorabflusses. Z Zellforsch Mikrosk Anat 105: 595–604, 1970.CrossRefGoogle Scholar
  78. 78.
    Eichner D: On the problem of the transfer of neurosecretion from the 3d ventricle in mammals. Z Mikrosk Anat Forsch 69:388–394, 1963.Google Scholar
  79. 79.
    Wittkowski W: Electron microscopic studies of the intraventricular neurosecretion in the recessus infundibularis of the mouse. Z Zellforsch Mikrosk Anat 92:207–216, 1968.PubMedCrossRefGoogle Scholar
  80. 80.
    Fleischhauer K: Fluorescence microscopy studies on the glial fibers. I. Observations on the walls of the cerebral ventricles of the cat (lateral ventricle, third ventricle). Z Zellforsch Mikrosk Anat 51:467–496, 1960.PubMedCrossRefGoogle Scholar
  81. 81.
    Cammermyer J: The hypependymal microglia cell. Z Anat Entwicklungsgesch 124:543–561, 1965.CrossRefGoogle Scholar
  82. 82.
    Blakemore WF: The ultrastructure of the sub-ependymal plate in the rat. J Anat 104:423–433, 1969.PubMedGoogle Scholar
  83. 83.
    Schwanitz W: Die topographische Verteilung supraependymaler Strukturen in den Ventrikeln und im Zentralkanal des Kaninchengehirns. Z Zellforsch Mikrosk Anat 100:536–551, 1969.PubMedCrossRefGoogle Scholar
  84. 84.
    Schimrigk K: Über die Wandstruktur der Seitenventrikel und des dritten Ventrikels beim Menschen. Z Zellforsch Mikrosk Anat 70:1–20, 1966.CrossRefGoogle Scholar
  85. 85.
    Kruger L, Maxwell DS: Electron microscopy of oligodendrocytes in normal rat cerebrum. Am J Anat 118:411–435, 1966.PubMedCrossRefGoogle Scholar
  86. 86.
    Boya J: Contribution to the ultrastructural study of microglia in the cerebral cortex. Acta Anat (Basel) 92:364–375, 1975.CrossRefGoogle Scholar
  87. 87.
    Blakemore WF: The ultrastructure of normal and reactive microglia. Acta Neuropathol (Berl) Suppl VI: 273–278, 1975.Google Scholar
  88. 88.
    Herndon RM: The fine structure of the rat cerebellum. II. The stellate neurons, granule cells, and glia. J Cell Biol 23:277–293, 1964.PubMedCrossRefGoogle Scholar
  89. 89.
    Mori S, Leblond CP: Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–80, 1969.PubMedCrossRefGoogle Scholar
  90. 90.
    Polak M, Haymaker W, Johnson JE Jr, D’Amelio F: Neuroglia and their reactions. In: Haymaker W, Adams RD (eds.). Histology and Histopathology of the Nervous System. Charles C Thomas, Springfield, IL; 1982; 407,410,432.Google Scholar
  91. 91.
    Tani E, Ametani T: Intercellular contacts of human gliomas. Prog Neuropathol 1:218–231, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Eiichi Tani

There are no affiliations available

Personalised recommendations