Skip to main content

A Networked Workstation Approach to Multi-Dimensional Biomedical Image Analysis

  • Chapter
Information Processing in Medical Imaging

Abstract

The capability to extract objective and quantitatively accurate information from multi-dimensional biomedical images has not kept pace with the capabilities to produce the images themselves. This is a paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging modalities possible have not been concomitantly developed for full exploitation of their capabilities. We have developed a network approach which integrates powerful new microcomputer-based systems and permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The network features an “intelligent” manager for efficient allocation of resources and ready access to all the information in a large 3-D image data base for rapid display, manipulation, and measurement. The system software provides important capabilities for displaying, manipulating and quantitatively analyzing both structural and functional data and their relationships in various organs of the body. Although the overall power of the system comes from the synergistic integration and utilization of networked components, the architecture permits and has fostered development of advanced image processing software which is transportable to a variety of stand-alone workstations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barillot, C., Gibaud, B., Scarabin, J. M., and Coatrieux, J. L. (1985). 3-D reconstruction of cerebral blood vessels, IEEE CGA, 5, 13–19.

    Google Scholar 

  • Baxter, B., Hitchner, L. E., and Anderson, R. E. (1982). Application of a three-dimensional display in diagnostic imaging, JCAT, 6, 1000–1005.

    Google Scholar 

  • Birkner, D. A. (1984). Design considerations for a user oriented PACS, Proc. ISMII 84, 89–101

    Google Scholar 

  • Bloch, P. and Udupa, J. K. (1983). Application of computerized tomography to radiation therapy and surgical planning, Proc. IEEE, 71, 351–355.

    Article  Google Scholar 

  • Camp, J. J., Stacy, M. C., and Robb, R. A. (1987), A system for interactive volume analysis (SIVA) of 4-D biomedical images, J. Med. Sys., (In Press).

    Google Scholar 

  • Durbin, R. M., Burns, R., Moulai, J., Metcalf, P., Freymann, D., Blum, M., Anderson, J. E., Harrison, S. C., and Wiley, D. C. (1986). Protein, DNA, and virus crystallography with a focused imaging proportional counter, Science, 232: 1127–1132.

    Article  Google Scholar 

  • Fellingham, L. L., Vogel, J. H., Lau, C., and Dev, P. (1986). Interactive graphics and 3-D modelling for surgical planning and prosthesis and implant design, Proc. NCGA 86, 3, 132–142.

    Google Scholar 

  • Fuchs, H., Pizer, S. M., Heinz, E. R., Bloomberg, S. H., Tsai, L. C., and Strickland, D. C. (1982). Design of and image editing with a space-filling 3-D display based on a standard raster graphics system, Proc. SPIE, 367: 117–127.

    Article  Google Scholar 

  • Fuchs, H. and Pizer, S. M. (1984). Systems for three-dimensional display of medical images, Proc. 1984 Intl. Joint Alpine Symp., 1–6.

    Google Scholar 

  • Glenn, W. V., Jr., Johnson, R. J., Morton, P. E. and Dwyer, S. J., III (1975). Image generation and display techniques for CT scan data: Thin transverse and reconstructed coronal and sagittal planes, Invest. Radiol., 10: 403–416.

    Google Scholar 

  • Goldwasser, S. M., Reynolds, R. A., Bapty, T., Baraff, D., Summers, J., Talton, D., and Walsh, E. (1985). Physicians workstation with real-time performance, IEEE NCA, 5: 44–57.

    Google Scholar 

  • Goldwasser, S. M. (1984). A generalized object display processor architecture, IEEE CGA, 4: 43–55.

    Google Scholar 

  • Gray, M. J. and Rutherford, H. (1984). Functional specifications of a useful digital multi-modality image workstation, Proc. ISMII 84, 8–12.

    Google Scholar 

  • Grewer, R., Monnich, K. J., Schmidt, J., Svensson, H., and Wendler, Th. (1985). Design of interactive workstations for the interpretation of medical images in pictorial information systems, Proc. Intl. Symp. CAR 85, 679–686.

    Google Scholar 

  • Harris, L. D., Robb, R. A., Yuen, T. S., and Ritman, E. L. (1978a). Non-invasive numerical dissection and display of anatomic structure using computerized x-ray tomography, Proc. SPIE, 152, 10–18.

    Article  Google Scholar 

  • Harris, L. D., Camp, J. J., Ritman, E. L., and Robb, R. A. (1986). Three-dimensional display and analysis of tomographic volume images utilizing a varifocal mirror, IEEE Trans. Med. Imag., 5: 67–72.

    Google Scholar 

  • Harris, L. D. (1981). Identification of the optimal orientation of oblique sections through multiple parallel CT images, JCAT, 5: 881–887.

    Google Scholar 

  • Harris, L. D. and Camp, J. J. (1984). Display and analysis of tomographic volumetric images utilizing a vari-focal mirror, Proc. SPIE, 507: 38–45.

    Article  Google Scholar 

  • Harris, L. D., Robb, R. A., Johnson, S. A., and Khalafalla, A. S. (1978b). Stereo display of computed tomographic data, in: “Challenges and Prospects for Advanced Medical Systems,” H. E. Emlet, Jr., ed., Symposia Specialists, Inc., Miami, FL, pp. 127–135.

    Google Scholar 

  • Harris, L. D., Evans, T. C., and Greenleaf, J. F. (1980). Display of 3-D ultrasonic images, in: “Acoustical Imaging”, K. Y. Wang, ed., pp. 227–237.

    Chapter  Google Scholar 

  • Heffernan, P. B. and Robb, R. A. (1985a). A new method for shaded surfaced display of biological and medical images, IEEE Trans. Med. Imag., 4: 26–38.

    Article  Google Scholar 

  • Heffernan, P. B. and Robb, R. A. (1985b). Display and analysis of 4-D medical images, Proc. Intl. Symp. CAR 85, 583–592.

    Google Scholar 

  • Herman, G. T., Udupa, J. K., Kramer, D. M., Lauterbur, P. C., Rudin, A. M., and Schneider, J. S. (1982). Three-dimensional display of nuclear magnetic resonance images, Opt. Eng., 21: 923–926.

    Article  Google Scholar 

  • Herman, G. T. and Liu, H. K. (1977). Display of three-dimensional information in computed tomography, JCAT, 1: 155–160.

    Google Scholar 

  • Herman, G. T. (1986). Computer produced stereoscopic display in radiology, Proc. NCGA 86, 3: 71–79.

    Google Scholar 

  • Hodges, L. F. and McAllister, D. F. (1985). Stereo and alternating-pair techniques for display of computer-generated images, IEEE CGA, 5: 38–45.

    Google Scholar 

  • Hoffman, E. A. and Heffernan, P. B. (1985a). A computer graphics-aided 3-D analysis of heart-lung interaction reconstructed via DSR scanning, Proc. NCGA, 3: 81–92.

    Google Scholar 

  • Hoffman, E. A. and Ritman, E. L. (1985b). Invariant total heart volume in the intact thorax, Am. J. Physiol.: Heart Circ. Physiol., 249: 883–890.

    Google Scholar 

  • Hunter, G. M. (1984). 3-D frame buffers for interactive analysis of 3-D data, Proc. SPIE, 507: 178–182.

    Google Scholar 

  • Jackson, I. T. and Bite, U. (1986). Three-dimensional CT scanning and major reconstructive surgery of head.and neck, Mayo Clinic Proc., 61: 546–555.

    Article  Google Scholar 

  • Jansson, D. G. and Kosowsky, R. P. (1984). Display of moving volumetric images, Proc. SPIE, 507: 82–92.

    Article  Google Scholar 

  • Jimenez, J., Santisteban, A., Carazo, J. M., and Carrascosa, J. L. (1986). Computer graphic display method for visualizing three-dimensional biological structures, Science, 232: 1113–1115.

    Article  Google Scholar 

  • Kehtarnavaz, N., Philippe, E. A., and de Figueiredo, R. J. P. (1984). A novel surface reconstruction and display method for cardiac PET imaging, IEEE Trans. Med. Imag., 3: 108–115.

    Article  Google Scholar 

  • Lenz, R. (1984). Processing and presentation of 3-D images, Proc. ISMII 84, 298–303.

    Google Scholar 

  • Lipton, L. (1984). Binocular symmetries as criteria for the successful transmission of images in the stereo-dimensional (TM) brand stereoscopic video system, Proc. SPIE, 507, 108–113.

    Article  Google Scholar 

  • Marsh, J. L. and Vannier, M. W. (1983). The “third” dimension in craniofacial surgery, Plas. Region. Surg., 71, 759–767.

    Google Scholar 

  • Matsumoto, M., Inoue, M., Tamura, S., Tanaka, K., and Abe, H. (1981). Three-dimensional echocardiography for spatial visualization and volume calculation of cardiac structures, J. Clin. Ultrasound, 9, 157–165.

    Article  Google Scholar 

  • News (1985). ATT ventures into radiology market with DIM system, Diag. Imag., 7, 45.

    Google Scholar 

  • Oswald, H. (1985). A medical workstation for three-dimensional display of computed tomogram images, Proc. Intl. Symp. CAR 85, 565–577.

    MathSciNet  Google Scholar 

  • Pizer, S. M., Zimmerman, J. B., and Staab, E. V. (1984). Adaptive grey level assignment in CT scan display, JCAT, 8, 300–305.

    Google Scholar 

  • Pizer, S. M., Fuchs, H., Mosher, C., Lifshitz, L., Abram, G. D., Ramanathan, S., Whitney, B. T., Rosenman, J. G., Staab, E. V., Chaney, E. L., and Sherouse, G. (1986). 3-D shaded graphics in radiotherapy and diagnostic imaging, Proc. NCGA 186, 3, 107–113.

    Google Scholar 

  • Rao, K. H. S. and Shas, A. V. (1984). Computer assisted thermography and its application in ovulation detection, Proc. ISMII 84, 459–464.

    Google Scholar 

  • Rhodes, M. L., Azzawi, Y. M., Chu, E. S., Pang, A. T., Glenn, W. V., and Rothman, S. L. G. (1985). A network solution for structure models and custom prostheses manufacturing from CT data, Proc. Intl. Symp. CAR 185, 403–412.

    Google Scholar 

  • Rhodes, M. L., Glenn, W. V., Rothman, S. L. G., Azzawi, Y. M., and Quinn, J. F. (1984). CT image processing using commercial digital networks, Proc. 1984 Intl. Joint Alpine Symp., 37–43.

    Google Scholar 

  • Rhodes, M. L., Glenn, W. V., Jr., and Azzawi, Y. M. (1980). Extracting oblique planes from serial CT sections, JCAT, 4, 649–654.

    Google Scholar 

  • Risser, T. (1984). Processing and presentation of 3-D images, Proc. ISMII 184, 61–65.

    Google Scholar 

  • Ritman, E. L., Kinsey, J. H., Robb, R. A., Gilbert, B. K., Harris, L. D., and Wood, E. H. (1980). Three-dimensional imaging of heart, lungs, and circulation, Science, 210, 273–280.

    Article  Google Scholar 

  • Robb, R. A. (1983). High-speed three-dimensional x-ray computed tomography: The Dynamic Spatial Reconstructor, Proc. IEEE, 71, 308–319.

    Article  Google Scholar 

  • Robb, R. A., Heffernan, P. B., Camp, J. J., and Hanson, D. P. (1986). A workstation for interactive display and quantitative analysis of 3-D and 4-D biomedical images, Proc. 10th Annual Symp. Computer Appl. Med. Care, IEEE Cat. No. 84CH234l -6, 240–256.

    Google Scholar 

  • Robb, R. A. (1985). “Three-Dimensional Biomedical Imaging,” Volumes I and I I, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Robbin, M. L., An, K. N., Linscheid, R. L., and Ritman, E. L. (1986). Anatomic and kinematic analysis of the human forearm using high-speed computed tomography, Med. Biol. Eng. Comput., 24, 164–168.

    Google Scholar 

  • Scharnweber, H. and Tonnie, K. D. (1984). Three-dimensional reconstruction and display of complex anatomical objects, Proc. 1984 Intl. Joint Alpine Symp., 711.

    Google Scholar 

  • Schwartz, E. L. and Merker, B. (1986). Computer-aided neuroanatomy: Differential geometry of cortical surfaces and an optimal flattening algorithm, IEEE CGA, 6, 36–44.

    Google Scholar 

  • Seide, K. and Ritman, E. L. (1984). Three-dimensional dynamic x-ray computed tomography imaging of stomach motility, 1984, Am. Physiol. Society, G574 - G581.

    Google Scholar 

  • Sher, L. D. (1986). Graphics in space: See it now, Proc. NCGA, 3, 101–106.

    Google Scholar 

  • Simon, W. (1977). A spinning mirror auto-stereoscopic display, Proc. SPIE, 120, 180–183.

    Article  Google Scholar 

  • Toga, A. W. and Arnicar, T. L. (1985). Image analysis of brain physiology, IEEE CGA, 5, 20–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robb, R.A., Stacy, M.C., McEwan, C.N. (1988). A Networked Workstation Approach to Multi-Dimensional Biomedical Image Analysis. In: de Graaf, C.N., Viergever, M.A. (eds) Information Processing in Medical Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7263-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7263-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7265-7

  • Online ISBN: 978-1-4615-7263-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics