Skip to main content

Comparisons of the Electric and Acoustic Senses and their Central Processing

  • Conference paper
Hearing and Sound Communication in Fishes

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Hearing is but one member of a large family of modalities that we call, collectively, the octavolateralis system, a better term than the older acousticolateralis system. This system embraces receptors for gravity, angular acceleration, vibration, water flow, turbulence and other aspects of aquatic disturbance not yet distinguished, acoustic and electric fields, indirectly magnetic fields, by the induced electric currents, not to mention the claims of chemosensitivity (Katsuki and Onada 1973, Yoshioka et al. 1978) and thermosensitivity (Hoagland 1933,1935, Sand 1938).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akutsu, Y., Obara, S.: Calcium dependent receptor potential of the electroreceptor of marine catfish. Proc. Jpn. Acad. 50, 247–251 (1974).

    CAS  Google Scholar 

  • Andrianov, Yu. N., Broun, G. R.: Perception of the magnetic field by the electroreceptor system in fishes. Neurophysiology 7, 338–339 (1976).

    Google Scholar 

  • Andrianov, G. N., Ilyinsky, O. B.: Some functional properties of central neurons connected with the lateral-line organs of the catfish (Ictalurus nebulosus). J. Comp. Physiol. 86, 365–376 (1973).

    Google Scholar 

  • Andrianov, Yu, N., Volkova, N. K.: Some morphological and functional properties of the lateral line system of the dwarf catfish. Neurophysiology 7, 160–164 (1976).

    Google Scholar 

  • Andrianov, G. N., Brown, H. R., Ilyinsky, O. B.: Responses of central neurons to electrical and magnetic stimuli of the ampullae of Lorenzini in the Black Sea skate. J. Comp. Physiol. 93, 287–299 (1974).

    Google Scholar 

  • Baker, C. L., Jr.: Jamming avoidance behavior in gymnotoid electric fish with pulse-type discharges: sensory encoding for a temporal pattern discrimination. J. Comp. Physiol. 136, 165–181 (1980).

    Google Scholar 

  • Bastian, J.: Electrosensory input to the corpus cerebelli of the high frequency electric fish Eigenmannia virescens. J. Comp. Physiol. 90, 1–24 (1974).

    Google Scholar 

  • Bastian, J.: Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotid fish. J. Neurophysiol. 38, 285–300 (1975).

    PubMed  CAS  Google Scholar 

  • Bastian, J.: The range of electrolocation: A comparison of electroreceptor responses and the responses of cerebellar neurons in a gymnotid fish. J. Comp. Physiol. 108, 193–210 (1976).

    Google Scholar 

  • Bastian, J.: Variations in the frequency response of electroreceptors dependent on receptor location in weakly electric fish (Gymnotoidei) with a pulse discharge. J. Comp. Physiol. 121, 53–64 (1977).

    Google Scholar 

  • Behrend, K.: Processing information carried in a high frequency wave: Properties of cerebellar units in the high frequency electric fish. J. Comp. Physiol. 118, 357–371 (1977).

    Google Scholar 

  • Bell, C. C.: Central nervous system physiology of electroreception, A review. J. Physiol. Paris 75, 361–379 (1979).

    PubMed  CAS  Google Scholar 

  • Bell, C. C., Russell, C. J.: Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J. Comp. Physiol. 182, 367–382 (1978).

    CAS  Google Scholar 

  • Bennett, M. V. L.: Mechanisms of electroreception. In: Lateral Line Detectors. Cahn, P. (ed.). Bloomington: Indiana Univ. Press, 1967, pp. 313–393.

    Google Scholar 

  • Bennett, M. V. L.: Comparative physiology: Electric organs. Annu. Rev. Physiol. 32, 471–528 (1970).

    PubMed  CAS  Google Scholar 

  • Bennett, M. V. L.: Electrolocation in fish. Ann. N.Y. Acad. Sci. 188, 242–269 (1971a).

    CAS  Google Scholar 

  • Bennett, M. V. L.: Electric organs. In: Fish Physiology, Vol. 5. Hoar, W. S., Randall, D. J. (eds.). New York: Academic Press, 1971b.

    Google Scholar 

  • Bennett, M. V. L.: Mechanism of afferent discharge from electroreceptors: implications for acoustic reception. In: Evoked Electrical Activity in the Auditory Nervous System. Naunton, R. F., Fernandez, C. (eds.). New York: Academic Press, 1978.

    Google Scholar 

  • Bennett, M. V. L., Clusin, W. T.: Transduction at electroreceptors: Origins of sensitivity. In: Membrane Transduction Mechanisms. Cone, R. A., Dowling, J. E. (eds.). New York: Raven Press, 1979.

    Google Scholar 

  • Bennett, M. V. L., Steinbach, A. B.: Influence of electric organ control system on electrosensory afferent pathways in mormyrids. In: Neurobiology of Cerebellar Evolution and Development. Llinas, R. (ed.). Chicago: American Medical Association (1969).

    Google Scholar 

  • Bodznick, D. A., Northcutt, R. G.: Electroreception in lampreys. Evidence that the earliest vertebrates were electroreceptive. Science, in press.

    Google Scholar 

  • Bombardieri, R. A., Feng, A. S.: Deficit in object detection (electrolocation) following interruption of cerebellar function in the weakly electric fish Apteronotus albifrons. Brain Res. 130, 343–347 (1977).

    PubMed  CAS  Google Scholar 

  • Bullock, T. H.: Biological sensors. In: Vistas in Science. Albuquerque: Univ. of New Mexico Press, 1968.

    Google Scholar 

  • Bullock, T. H.: Species differences in effect of electroreceptor input on electric organ pacemakers and other aspects of behavior in electric fish. Brain Behav. Evol. 2, 85–118 (1969).

    Google Scholar 

  • Bullock, T. H.: Processing of ampullary input in the brain: Comparison of sensitivity and evoked responses among elasmobranch and siluriform fishes. J. Physiol. Paris 75, 397–407 (1979).

    PubMed  CAS  Google Scholar 

  • Bullock, T. H.: Electroreception. Ann. Rev. Neurosci. Vol. 5 (1981a) (in press).

    Google Scholar 

  • Bullock, T. H.: Physiology of the tectum mesencephali in elasmobranchs. In: Comparative Neurology of the Optic Tectum. Vanegas, H. (ed.). New York: Plenum Press (198lb) (in press).

    Google Scholar 

  • Bullock, T. H., Hamstra, R. H., Jr., Scheich, H.: The jamming avoidance response of high frequency electric fish. I. General features. J. Comp. Physiol. 77, 1–22 (1972a).

    Google Scholar 

  • Bullock, T. H., Hamstra, R. H., Jr., Scheich, H.: The jamming avoidance response of high frequency electric fish. II. Quantitative aspects. J. Comp. Physiol. 77, 23–48 (1972b).

    Google Scholar 

  • Capranica, R. R.: Morphology and physiology of the auditory system. In: Frog Neurobiology. Llinas, R., Precht, W. (eds.). Berlin: Springer-Verlag, 1976, pp. 537–575.

    Google Scholar 

  • Clusin, W. T., Bennett, M. V. L.: Calcium-activated conductance in skate electroreceptors: Current clamp experiments. J. Gen. Physiol. 69, 121–143 (1977a).

    CAS  Google Scholar 

  • Clusin, W. T., Bennett, M. V. L.: Calcium-activated conductance in skate electroreceptors: Voltage clamp experiments. J. Gen. Physiol. 69, 145–182 (1977b).

    CAS  Google Scholar 

  • Clusin, W. T., Bennett, M. V. L.: The oscillatory responses of skate electroreceptors to small voltage stimuli. J. Gen. Physiol. 73, 685–702 (1979a).

    CAS  Google Scholar 

  • Clusin, W. T., Bennett, M. V. L.: The ionic basis of oscillatory responses of skate electroreceptors. J. Gen. Physiol. 73, 703–723 (1979b).

    CAS  Google Scholar 

  • Cole, K. S.: Membranes, Ions and Impulses. Berkeley: Univ. of Calif. Press, 1968.

    Google Scholar 

  • Enger, P. S., Libouban, S., Szabo, T.: Fast conducting electrosensory pathway in the mormyrid fish Gnathonemus petersii. Neurosci. Lett. 2, 127–133 (1976a).

    Google Scholar 

  • Enger, P. S., Lubouban, S., Szabo, T.: Rhombo-mesencephalic connections in the fast conducting electrosensory system of the mormyrid fish, Gnathonemus petersii An HRP study. Neurosci. Lett. 3, 239–243 (1976b).

    CAS  Google Scholar 

  • Enger, P. S., Szabo, T.: Activity of central neurons involved in electroreception in some weakly electric fish (Gymnotidae). J. Neurophysiol. 28, 800–818 (1965).

    PubMed  CAS  Google Scholar 

  • Feng, A. S.: The role of the electrosensory system in postural control in the weakly electric fish Eigenmannia virescens. J. Neurobiol. 8, 429–437 (1977).

    PubMed  CAS  Google Scholar 

  • Feng, A. S., Narins, P. M., Capranica, R. R.: Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): Their peripheral origins and frequency sensitivities. J. Comp. Physiol. 100, 221–229 (1975).

    Google Scholar 

  • Fessard, A., Szabo, T.: Mise en évidence d’un récepteur sensible à l’électricité dans la peau des Mormyres. C.R. Acad. Sci. Paris 255, 1859–1860 (1961).

    Google Scholar 

  • Fessard, A., Szabo, T.: Effets des variations de température sur l’activité de certains récepteurs des Mormyres. C.R. Acad. Sci. Paris 254, 2084–2085 (1962).

    PubMed  CAS  Google Scholar 

  • Fettiplace, R., Crawford, A. D.: The coding of sound pressure and frequency in cochlear hair cells of the terrapin. Proc. R. Soc. London Ser. B 203, 209–218 (1978).

    CAS  Google Scholar 

  • Fields, R. D., Lange, G. D.: Electroreception in the ratfish (Hydrolagus colliei). Science 207, 547–548 (1980).

    PubMed  CAS  Google Scholar 

  • Finger, T. E., Bell, C. C., Russell, C. J.: Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp. Brain Res. (1981) (in press).

    Google Scholar 

  • Furukawa, T., Ishii, Y.: Neurophysiological studies on hearing in goldfish. J. Neurophysiol 30, 1377–1403 (1967).

    PubMed  CAS  Google Scholar 

  • Harder, W.: Nachweis aktiver (elektrischer) Ortung bei Mormyridae (Teleostei, Pisces). Z. Tierpsychol. 30, 94–102 (1972).

    Google Scholar 

  • Heiligenberg, W.: Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei). J. Comp. Physiol. 87, 137–164 (1973).

    Google Scholar 

  • Heiligenberg, W.: Electroreception and jamming avoidance in a Hypopygus (Rhamyphichthyidae, Gymnotoidei) an electric fish with pulse-type discharge. J. Comp. Physiol. 91, 223–240 (1974).

    Google Scholar 

  • Heiligenberg, W.: Principles of electrolocation and jamming avoidance in electric fish. A neuroethological approach. In: Studies of Brain Function. Braitenberg, V., et al. (eds.). New York: Springer-Verlag, 1977.

    Google Scholar 

  • Heiligenberg, W., Altes, R. A.: Phase sensitivity in electroreception. Science 199, 1001–1004 (1978).

    PubMed  CAS  Google Scholar 

  • Heiligenberg, W., Bastian, J.: The control of Eigenmannia’s pacemaker by distributed evaluation of electroreceptive afferences. J. Comp. Physiol. 136, 113–133 (1980).

    Google Scholar 

  • Heiligenberg, W., Baker, C., Bastian, J.: The jamming avoidance response in gymnotoid pulse-species: A mechanism to minimize the probability of pulse-train coincidence. J. Comp. Physiol. 124, 211–224 (1978).

    Google Scholar 

  • Heiligenberg, W., Baker, C., Matsubara, J.: The jamming avoidance response in Eigenmannia revisited: The structure of a neuronal democracy. J. Comp. Physiol. 127, 267–286 (1978).

    Google Scholar 

  • Hoagland, H.: Electrical responses from lateral-line nerves of fishes. III. J. Gen. Physiol. 17, 77–82 (1933).

    PubMed  CAS  Google Scholar 

  • Hoagland, H.: Pacemakers in Relation to Aspects of Behavior. New York: Macmillan, 1935.

    Google Scholar 

  • Honrubia, V., Strelioff, D., Ward, P. H.: Quantitative studies of cochlear potentials along the scale media of the guinea pig. J. Acoust. Soc. Am. 64, 600–609 (1973).

    Google Scholar 

  • Hopkins, C. D.: Stimulus filtering and electroreception: Tuberous electroreceptors in three species of gymnotoid fish. J. Comp. Physiol. 111, 171–207 (1976).

    Google Scholar 

  • Hopkins, C. D.: Evolution of electric communication channels of mormyrids. Behav. Ecol. Sociobiol. 7, 1–13 (1980).

    Google Scholar 

  • Hudspeth, A. J., Corey, D. P.: Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Nat. Acad. Sci. 74, 2407–2411 (1977).

    PubMed  CAS  Google Scholar 

  • Il’inskii, O. B., Enin, L. D., Volkova, N. K.: Evoked potentials of the medulla oblongata of the skate in response to stimulation of lateral line nerves. Neurophysiology 3, 213–218 (1972).

    Google Scholar 

  • Kalmijn, A. J.: The second derivative or potential mode? A critical evaluation of Lissmann and Machin’s theory concerning the mode of operation in the electroreceptors of Gymnarchus niloticus and similar fish. Scripps Inst. Oceanogr. Ref. Ser. Contr. no. 72–69, 1–32 (1972a).

    Google Scholar 

  • Kalmijn, A. J.: Bioelectric fields in sea water and the function of the ampullae of Lorenzini in elasmobranch fishes. Scripps Inst. Oceanogr. Ref. Ser. Contr. no. 72–83, 1–21 (1972b).

    Google Scholar 

  • Katsuki, Y., Onada, N.: The lateral-line organ of fish as a chemoreceptor. In: Responses of Fish to Environmental Changes. Chavin, W. (ed.). Springfield, Illinois: Charles C Thomas, 1973.

    Google Scholar 

  • Knudsen, E. I.: Midbrain responses to electroreceptive input in catfish: Evidence of orientation preferences and somatotopic organization. J. Comp. Physiol. 106, 51–67 (1976a).

    Google Scholar 

  • Knudsen, E. I.: Midbrain units in catfish. Response properties to electroreceptive input. J. Comp. Physiol. 109, 315–335 (1976b).

    Google Scholar 

  • Knudsen, E. I.: Distinct auditory and lateral line nuclei in the midbrain of catfishes. J. Comp. Neurol 173, 417–432 (1977).

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I.: Functional organization in the electroreceptive midbrain of the catfish. J. Neurophysiol. 41, 350–364 (1978).

    PubMed  CAS  Google Scholar 

  • Langner, G., Scheich, H.: Active phase coupling in electric fish: Behavioral control with microsecond precision. J. Comp. Physiol. 128, 235–240 (1978).

    Google Scholar 

  • Lissmann, H. W.: On the function and evolution of electric organs in fish. J. Exp. Biol. 35, 156–191 (1958).

    Google Scholar 

  • Lissmann, H. W., Machin, K. E.: The mechanism of object location in Gymnarchus niloticus and similar fish. J. Exp. Biol. 35, 451–486 (1958).

    Google Scholar 

  • Lissmann, H. W., Mullinger, A. M.: Organization of ampullary electric receptors in Gymnotidae (Pisces). Proc. Roy. Soc. London Ser. B 169, 345–378 (1968).

    CAS  Google Scholar 

  • MacDonald, J. A., Larmier, J. L.: Phase-sensitivity of Gymnotus carapo in low-amplitude electrical stimuli. Z. Vergl. Physiol. 70, 322–334 (1970).

    Google Scholar 

  • Machin, K. E., Lissmann, H. W.: The mode of operation of the electric receptors in Gymnarchus niloticus. J. Exp. Biol. 37, 801–811 (1960).

    Google Scholar 

  • Maler, L.: The posterior lateral line lobe of a mormyrid fish–A Golgi study. J. Comp. Neurol 152, 281–298 (1973).

    PubMed  CAS  Google Scholar 

  • Maler, L., Karten, H. J., Bennett, M. V. L.: The central connections of the posterior lateral line nerve of Gnathonemus petersii. J. Comp. Neurol. 151, 57–66 (1973a).

    CAS  Google Scholar 

  • Maler, L., Karten, H. J., Bennett, M. V. L.: The central connections of the anterior lateral line nerve of Gnathonemus petersii. J. Comp. Neurol. 151, 67–84 (1973b).

    CAS  Google Scholar 

  • Marmarelis, P. Z., Marmarelis, V. Z.: Analysis of Physiological Systems: The White Noise Approach. New York: Plenum Press, 1978.

    Google Scholar 

  • McCreery, D. B.: Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus; Connections from the lateral line nerve and steady-state frequency response characteristics. J. Comp. Physiol. 113, 317–340 (1977a).

    Google Scholar 

  • McCreery, D. B.: Spatial organization of receptive fields of lateral lemniscus neurons of the lateral line lobe of catfish Ictalurus nebulosus. J. Comp. Physiol. 113, 341–353 (1977b).

    Google Scholar 

  • Meyer, D. L., Heiligenberg, W., Bullock, T. H.: The ventral substrate response. A new postural control mechanism in fishes. J. Comp. Physiol. 109, 59–68 (1976).

    Google Scholar 

  • Meyer, D. L., Becker, R., Graf, W.: The ventral substrate response of fishes. Comparative investigation of the VSR about the roll and the pitch axis. J. Comp. Physiol. 117, 209–217 (1977).

    Google Scholar 

  • Nieuwenhuys, R., Nicholson, C.: Aspects of the histology of the cerebellum of mormyrid fishes. In: Neurobiology of Cerebellar Evolution and Development. Llinas, R. (ed.). Chicago: American Medical Association, 1969.

    Google Scholar 

  • Northcutt, R. G., Bodznick, D. A., Bullock, T. H.: Most non-teleost fishes have electroreception. XXVIII Internat. Cong. Physiol. Sci. Budapest (Abstr.) (1980).

    Google Scholar 

  • Obara, S.: Mechanism of electroreception in ampullae of Lorenzini of the marine catfish Plotosus. In: Electrobiology of Nerve, Synapse, and Muscle. Reuben, J. P., Purpura, D. P., Bennett, M. V. L., Kandel, E. R. (eds.). New York: Raven Press, 1976.

    Google Scholar 

  • Obara, S., Bennett, M. V. L.: Mode of operation of ampullae of Lorenzini of the skate, Raja. J. Gen. Physiol. 60, 534–557 (1972).

    PubMed  CAS  Google Scholar 

  • Obara, S., Sugawara, Y.: Contribution of Ca to the electroreceptor mechanism in Plotosus ampullae. J. Physiol. Paris 75, 335–340 (1979).

    PubMed  CAS  Google Scholar 

  • Partridge, B. L., Heiligenberg, W.: Three’s a crowd? Predicting Eigenmannia’s reponses to multiple jamming. J. Comp. Physiol. 136, 153–164 (1980).

    Google Scholar 

  • Paul, D. H., Roberts, B. L.: Studies on a primitive cerebellar cortex. III. The projection of the anterior lateral-line nerve to the lateral-line lobes of the dogfish brain. Proc. R. Soc. London Ser. B 195, 479–496 (1977).

    CAS  Google Scholar 

  • Pimentel-Souza, F.: Regulation of the electroreceptor potential frequency by the electric discharge of Gnathonemus petersii. J. Comp. Physiol. 111, 115–125 (1976).

    Google Scholar 

  • Piatt, C. J., Bullock, T. H., Cźeh, G., Kovacević, N., Konjević, Dj., Gojković, M.: Comparison of electroreceptor, mechanoreceptor and optic evoked potentials in the brain of some rays and sharks. J. Comp. Physiol. 95, 323–355 (1974).

    Google Scholar 

  • Rethelyi, M., Szabo, T.: A particular nucleus in the mesencephalon of a weakly electric fish: Gymnotus carapo (Gymnotidae). Exp. Brain Res. 17, 229–241 (1973a).

    CAS  Google Scholar 

  • Rethelyi, M., Szabo, T.: Neurohistological analysis of the lateral lobe in electric fish, Gymnotus carapo (Gymnotidae). Exp. Brain Res. 18, 323–339 (1973b).

    CAS  Google Scholar 

  • Rodieck, R. W.: Visual pathways. Annu. Rev. Neurosci. 2, 193–226 (1979).

    PubMed  CAS  Google Scholar 

  • Roth, A.: Central neurons involved in the electroreception of the catfish Kryptopterus. J. Comp. Physiol 100, 135–146 (1975).

    Google Scholar 

  • Russell, I. J., Sellick, P.M.: Measurement of potassium and chloride ion concentrations in the cupulae of the lateral lines of Xenopus laevis. J. Physiol 257, 245–255 (1976).

    PubMed  CAS  Google Scholar 

  • Sand, A.: The function of the ampullae of Lorenzini, with some observations on the effect of temperature on sensory rhythms. Proc. R. Soc. London Ser. B 125, 524–553 (1938).

    Google Scholar 

  • Scheich, H.: Neural basis of communication in the high frequency electric fish Eigenmannia virescens (jamming avoidance response). I. Open loop experiments and the time domain concept of signal analysis. J. Comp. Physiol. 113, 181–206 (1977a).

    Google Scholar 

  • Scheich, H.: Neural basis of communication in the high frequency electric fish Eigenmannia virescens (jamming avoidance response). II. Jammed electroreceptor neurons in the lateral line nerve. J. Comp. Physiol. 113, 207–227 (1977b).

    Google Scholar 

  • Scheich, H.: Neural basis of communication in the high frequency electric fish Eigenmannia virescens (jamming avoidance response). III. Central integration in the sensory pathway and control of the pacemaker. J. Comp. Physiol. 113, 229–255 (1977c).

    Google Scholar 

  • Scheich, H., Bullock, T. H.: The detection of electric fields from electric organs. In: Handbook of Sensory Physiology III/3. Fessard, A. (ed.). New York: Springer-Verlag, 1974.

    Google Scholar 

  • Scheich, H., Maler, L.: Laminar organization of the torus semicircularis related to the input from two types of electroreceptors. In: Afferent and Intrinsic Organization of Laminated Structures in the Brain. Exp. Brain Research/Suppl. 1. Creutzfeldt, O. (ed.). New York: Springer-Verlag, 1976.

    Google Scholar 

  • Scheich, H., Bullock, T. H., Hamstra, R. J., Jr.: Coding properties of two classes of afferent nerve fibers: High-frequency electroreceptors in the electric fish, Eigenmannia. J. Neurophysiol. 36, 39–60 (1973).

    PubMed  CAS  Google Scholar 

  • Schlegel, P. A.: Activities of rhombencephalic units in mormyrid fish. Exp. Brain Res. 19, 300–314 (1974).

    PubMed  CAS  Google Scholar 

  • Sotelo, C., Rethelyi, M., Szabo, T.: Morphological correlates for electrotonic transmission in the magnocellular mescephalic nucleus of the weakly electric fish Gymnotus carapo. J. Neurocytol. 4, 587–607 (1975).

    PubMed  CAS  Google Scholar 

  • Späth, M., Lehmann, B.: Inhibitory influence of the connecting strands in fish. Naturwissenschaften 9, 435–436 (1976).

    Google Scholar 

  • Stenden, W.: Morphologische Studien an Mormyriden. Verh. Dtsch. Zool. Ges. 24, 254–261 (1914).

    Google Scholar 

  • Szabo, T.: The activity of cutaneous sensory organs in Gymnarchus niloticus. Life Sci. 7, 285–286 (1962).

    Google Scholar 

  • Szabo, T.: Anatomy of the specialized lateral line organs of electroreception. In: Handbook of Sensory Physiology III/3. Fessard, A. (ed.). New York: Springer-Verlag, 1974.

    Google Scholar 

  • Szabo, T., Ravaille, M.: Synaptic structure of the lateral line lobe nucleus in mormyrid fish. Neurosci. Lett. 2, No. 3, 121–127 (1976).

    Google Scholar 

  • Szabo, T., Sakata, H., Ravaille, M.: An electrotonically coupled pathway in the central neuron system of some teleost fish, Gymnotidae and Mormyridae. Brain Res. 95, 459–474 (1975).

    PubMed  CAS  Google Scholar 

  • Szabo, T., Enger, P. S., Libouban, S.: Electrosensory systems in the mormyrid fish, Gnathonemus petersii: Special emphasis on the fast conducting pathway. J. Physiol. Paris 75, 409–420 (1979).

    PubMed  CAS  Google Scholar 

  • Teeter, J. H., Szamier, R. B., Bennett, M. V. L.: Ampullary electroreceptors in the sturgeon Scaphirhynchus platorynchus (Rafinesque). J. Comp. Physiol. 138, 213–223 (1980).

    Google Scholar 

  • Turner, R. G.: Physiology and bioacoustics in reptiles. In: Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag, 1980, pp. 205–237.

    Google Scholar 

  • Viancour, T. A.: Review of electroreceptor and peripheral electrosensory system physiology. Proc. XXVII Internat. Union Physiol. Sciences, Paris 13, 656 (1977).

    Google Scholar 

  • Viancour, T. A.: Electroreceptors of a weakly electric fish. I. Characterization of tuberous receptor organ tuning. J. Comp. Physiol. 133, 317–327 (1979a).

    Google Scholar 

  • Viancour, T. A.: Electroreceptors of a weakly electric fish. II. Individually tuned receptor oscillations. J. Comp. Physiol. 133, 328–339 (1979b).

    Google Scholar 

  • Viancour, T. A.: Peripheral electrosense physiology: A review of recent findings. J. Physiol. Paris 75, 321–333 (1979c).

    CAS  Google Scholar 

  • Westby, G. W. M.: Has the latency dependent response of Gymnotus carapo to discharge-triggered stimuli a bearing on electric fish communication? J. Comp. Physiol. 96, 307–341 (1975).

    Google Scholar 

  • Yoshioka, T., Asanuma, A., Yanagisawa, K., Katsuki, Y.: The chemical receptive mechanism in the lateral-line organ. Jpn. J. Physiol. 28, 557–567 (1978).

    PubMed  CAS  Google Scholar 

  • Zipser, B.: The electrosensory system of mormyrids. Ph.D. Thesis, Yeshiva University, New York, 1971.

    Google Scholar 

  • Zipser, B., Bennett, M. V. L.: Responses of cells of posterior lateral line lobe to activation of electroreceptors in a mormyrid fish. J. Neurophysiol. 39, 693–712 (1976a).

    CAS  Google Scholar 

  • Zipser, B., Bennett, M. V. L.: Interaction of electrosensory and electromotor signals in lateral line lobe of a mormyrid fish. J. Neurophysiol. 39, 713–721 (1976b).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this paper

Cite this paper

Bullock, T.H. (1981). Comparisons of the Electric and Acoustic Senses and their Central Processing. In: Tavolga, W.N., Popper, A.N., Fay, R.R. (eds) Hearing and Sound Communication in Fishes. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7186-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7186-5_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7188-9

  • Online ISBN: 978-1-4615-7186-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics