Skip to main content

Models of Acoustic Localization

  • Conference paper
Hearing and Sound Communication in Fishes

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

It was only several years ago that valid proofs of acoustic localization in teleost fishes were first obtained (see Tavolga 1976, Schuijf and Buwalda 1980 for reviews). Behavioral experiments to demonstrate localization require the production of traveling sound waves that propagate in different directions but do not differ in other qualities. At present, directional stimuli needed to demonstrate acoustic localization can only be obtained in deep water as in a lake or fjord. The inconvenience of doing experiments in the field, to a considerable degree, accounts for the very limited amount of data available today, although such experiments are absolutely necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions. Washington, D.C.: U.S. Govt. Print. Off., 1968.

    Google Scholar 

  • Banner, A.: Evidence of sensitivity to acoustic displacements in the lemon shark, Negaprion brevirostris (Poey). In: Lateral Line Detectors. Cahn, P. H. (ed.). Bloomington: Indiana Univ. Press, 1967, pp. 265–273.

    Google Scholar 

  • Banner, A.: Use of sound in predation by young lemon sharks,Negaprion brevirostris (Poey). Bull. Mar. Sci. 22, 251–283 (1972).

    Google Scholar 

  • van Bergeijk, W. A.: Variations on a theme of Békésy: A model of binaural interaction. J. Acoust. Soc. Am. 34, 1431–1437 (1962).

    Article  Google Scholar 

  • van Bergeijk, W. A.: Directional and non-directional hearing in fish. In: Marine Bioacoustics, Vol. 1. Tavolga, W. N. (ed.). New York: Pergamon Press, 1964, pp. 281–299.

    Google Scholar 

  • Brekhovshkikh, L. M.: Waves in Layered Media. New York: Academic Press, 1960.

    Google Scholar 

  • Burington, R. S.: Handbook of Mathematical Tables and Formulas. New York: McGraw-Hill, 1965.

    Google Scholar 

  • Buwalda, R. J. A., Schuijf, A., Hawkins, A. D.: On the discrimination in three dimensions of sound waves from opposing directions by the cod. J. Exp. Biol. (in press)

    Google Scholar 

  • Buwalda, R. J. A., van der Steen, J.: Sensitivity of the cod sacculus to directional and non-directional stimuli. Comp. Biochem. Physiol. 64A, 467–471 (1979).

    Article  Google Scholar 

  • Chapman, C. J., Johnstone, A. D. F.: Some auditory discrimination experiments on marine fish. J. Exp. Biol. 61, 521–528 (1974).

    PubMed  CAS  Google Scholar 

  • Cahn, P. H., Siler, W., Fuijya, M.: Sensory detection of environmental changes by fish. In: Responses of fish to environmental changes. Chavin, W. (ed.). Springfield, Illinois: Charles C Thomas, 1973, Ch. 13.

    Google Scholar 

  • Corwin, J. T.: Morphology of the macula neglecta in sharks of the genus Carcharhinus. J. Morphol. 152, 341–362 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Crawford, F. S.: Waves (Berkeley Physics Course, Vol. 3), 3rd ed. New York: McGraw-Hill, 1968.

    Google Scholar 

  • Elmore, W. C., Heald, M. A.: Physics of Waves. Tokyo: McGraw-Hill, 1969.

    Google Scholar 

  • Enger, P. S., Hawkins, A. D., Sand, O., Chapman, C. J.: Directional sensitivity of saccular microphonic potentials in the haddock. J. Exp. Biol. 59, 425–434 (1973).

    PubMed  CAS  Google Scholar 

  • Fay, R. R., Popper, A. N.: Modes of stimulation of the teleost ear. J. Exp. Biol. 62, 379–387 (1975).

    PubMed  CAS  Google Scholar 

  • Fay, R. R., Popper, A. N.: Structure and function in teleost auditory systems. In: Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag, 1980, pp. 3–42.

    Chapter  Google Scholar 

  • Fay, R. R., Olsho, L. W.: Discharge patterns of lagenar and saccular neurones of the goldfish eighth nerve: Displacement sensitivity and directional characteristics. Comp. Biochem. Physiol. 62A, 377–387 (1979).

    Article  Google Scholar 

  • Gallé, H. G., Clemens, A.: The sacculus of Rana esculenta: A physiological and physical study of the spatial and temporal properties of an equilibrium system (in Dutch with a summary in English). Thesis, University of Utrecht, Utrecht, 1976.

    Google Scholar 

  • Hawkins, A. D., Sand, O.: Acoustic properties of the cod swimbladder. J. Exp. Biol. 58, 797–820 (1973).

    Google Scholar 

  • Hawkins, A. D., Sand, O.: Directional hearing in the median vertical plane. J. Comp. Physiol. 122A, 1–8 (1977).

    Article  Google Scholar 

  • Kelly, J. C., Nelson, D. R.: Hearing thresholds of the horn shark Heterodontus francisci. J. Acoust. Soc. Am. 58, 905–909 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Kemmer, M. N.: Vector analysis for physicists. Cambridge: Cambridge Univ. Press, 1976.

    Google Scholar 

  • Kittel, C., Knight, W. D., Ruderman, M. A.: Mechanics. (Berkeley Physics Course, Vol. 1). New York: McGraw-Hill, 1965.

    Google Scholar 

  • Klimley, A. P., Myrberg, A. A., Jr.: Acoustical stimuli underlying withdrawal from a sound source by adult lemon sharks, Negaprion brevirostris (Poey). Bull. Mar. Sci. 29, 447–458 (1979).

    Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: Fluid mechanics. (Course of Theoretical Physics, Vol. 6), 3rd ed. Oxford: Pergamon Press, 1963.

    Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: Mechanics. (Course of Theoretical Physics, Vol. 1), 3rd ed. Oxford: Pergamon Press, 1976.

    Google Scholar 

  • Milsum, J. H.: Biological Control Systems Analysis. New York: McGraw-Hill, 1966.

    Google Scholar 

  • Morse, Ph. M., Ingard, K. U.: Linear acoustic theory. In: Encyclopedia of Physics, Vol. 11/1. Flügge, S. (ed.). Berlin: Springer-Verlag, 1961.

    Google Scholar 

  • Myrberg, A. A., Jr.: Underwater sound-Its effect on the behavior of sharks. In: Sensory Biology of Sharks, Skates and Rays. Hodgson, E. S., Mathewson, R. F. (eds.). Arlington: Office of Naval Research, 1978, pp. 391–497.

    Google Scholar 

  • Myrberg, A. A., Jr., Ha, S. J., Walewski, S., Banburry, J. C.: Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull. Mar. Sci. 22, 926–949 (1972).

    Google Scholar 

  • Myrberg, A. A., Jr., Gordon, C. R., Klimley, A. P.: Attraction of free ranging sharks to low-frequency sound, with comments on its biological significance. In: Sound Reception in Fishes. Schuijf, A., Hawkins, A. D. (eds.). New York: Elsevier, 1976, pp. 205–228.

    Google Scholar 

  • Myrberg, A. A., Jr., Spanier, J. R., Ha, S. J.: Temporal patterning in acoustic communication. In: Contrasts in Behavior. Reese, E. S., Lighter, F. J. (eds.). New York: Wiley, 1978, pp. 137–179.

    Google Scholar 

  • Nelson, D. R.: Hearing thresholds, frequency discrimination and acoustic orientation in the lemon shark, Negaprion brevirostris (Poey). Bull. Mar. Sci. 17, 741–768 (1967).

    Google Scholar 

  • Nelson, D. R.: Telemetering techniques for the study of free-ranging sharks. In: Sensory Biology of Sharks, Skates, and Rays. Hodgson, E. S., Mathewson, R. F. (eds.). Arlington: Office of Naval Research, 1978, pp. 419–482.

    Google Scholar 

  • Nelson, D. R., Gruber, S. H.: Sharks: Attraction by low-frequency sounds. Science 142, 975–977 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. R., Johnson, R. H.: Acoustic attraction of Pacific reef sharks: effects of pulse intermittency and variability. J. Comp. Biochem. Physiol. 42A, 85–89 (1972).

    Article  Google Scholar 

  • Olsen, K.: Directional hearing in cod (Gadus morhua). Coun. Meet. Int. Coun. Explor. Sea (B20) (1969).

    Google Scholar 

  • Pekeris, C. L.: Theory of propagation of explosive sound in shallow water. Geol. Soc. Am. Memoir 27, 1–117 (1948).

    Google Scholar 

  • Popper, A. N.: A comparative study of the otolithic organs in fishes. Scanning Electron Microscopy II, 405–416 (1978).

    Google Scholar 

  • Sand, O.: Directional sensitivity of microphonic potentials from the perch ear. J. Exp. Biol. 60, 881–899 (1974).

    PubMed  CAS  Google Scholar 

  • Schuijf, A.: Field studies of directional hearing in marine teleosts. Thesis, Univ. of Utrecht, Utrecht, 1974.

    Google Scholar 

  • Schuijf, A.: Directional hearing of cod (Gadus morhua) under approximate free field conditions. J. Comp. Physiol. 98, 307–332 (1975).

    Article  Google Scholar 

  • Schuijf, A.: The phase model of directional hearing in fish. In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976a, pp. 63–84.

    Google Scholar 

  • Schuijf, A.: Timing analysis and directional hearing in fish. In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976b, pp. 87–112.

    Google Scholar 

  • Schuijf, A., Siemelink, M. E.: The ability of cod (Gadus morhua) to orient towards a sound source. Experientia (Basel) 30, 773–774 (1974).

    Article  CAS  Google Scholar 

  • Schuijf, A., Buwalda, R. J. A.: On the mechanism of directional hearing in cod (Gadus morhua L.). J. Comp. Physiol. 98, 333–343 (1975).

    Article  Google Scholar 

  • Schuijf, A., Buwalda, R. J. A.: Underwater localization—A major problem in fish acoustics. In: Comparative Studies of Hearing in Vertebrates. Popper, A. N., Fay, R. R. (eds.). New York: Springer-Verlag, 1980, pp. 43–77.

    Chapter  Google Scholar 

  • Schuijf, A., Visser, C., Willers, A. F. M., Buwalda, R. J. A.: Acoustic localization in an ostariophysian fish. Experientia (Basel) 33, 1062–1063 (1977).

    Article  CAS  Google Scholar 

  • Tavolga, W. N.: Acoustic obstacle avoidance in the sea catfish, Arius felis. In: Sound Reception in Fish. Schuijf, A., Hawkins, A. D. (eds.). Amsterdam: Elsevier, 1976, pp. 185–204.

    Google Scholar 

  • Urick, R.: Principles of underwater sound for engineers. New York: McGraw-Hill, 1967.

    Google Scholar 

  • de Vries, H.: The mechanics of the otolith mechanics. Acta Otol. Lar. 38, 262–273 (1950).

    Article  Google Scholar 

  • von Frisch, K., Dijkgraaf, S.: Können Fische die Schallrichtung wahrnehmen? Z. Vergl. Physiol. 22, 641–655 (1935).

    Google Scholar 

  • Werner, G.: The study of sensation in physiology: Psychophysical and neurophysiological correlation. In: Medical Physiology, Vol. 2, 12th ed. Mountcastle, V. B. (ed.). St. Louis: Mosby, 1968, pp. 1643–1671.

    Google Scholar 

  • Ziemer, R. E., Tranter, W. H.: Principles of communications. Boston: Houghton Mifflin, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York Inc.

About this paper

Cite this paper

Schuijf, A. (1981). Models of Acoustic Localization. In: Tavolga, W.N., Popper, A.N., Fay, R.R. (eds) Hearing and Sound Communication in Fishes. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7186-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7186-5_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7188-9

  • Online ISBN: 978-1-4615-7186-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics