Skip to main content

Antidepressants and Related Drugs

  • Chapter
  • 154 Accesses

Abstract

The clinical efficacy of various drugs used in the treatment of affective disorders has been well established during the past decade.(1–7) The biological actions of these drugs, including their neurochemical and behavioral effects, have been fairly extensively investigated(3–18) and aspects of this literature have been reviewed recently. This chapter will focus primarily on the effects of these drugs on the physiology and metabolism of the biogenic amines in the nervous system. The effects of these drugs on behavior in animals, as well as in man, will also be reviewed, since the correlation of alterations in behavior with neurochemical changes has been of considerable interest in this field of research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Davis, G. L. Klerman, and J. J. Schildkraut, in Psychopharmacology: A Review of Progress. 1957–1967 (D. H. Efron, ed.), pp. 719–747, U.S. Government Printing Office, Washington (1968).

    Google Scholar 

  2. M. Shepherd, M. Lader, and R. Rodnight, Clinical Psychopharmacology. The English Universities Press, Ltd., London (1968).

    Google Scholar 

  3. M. Schou, Lithium in psychiatric therapy and prophylaxis, J. Psychiat. Res. 6:67–95 (1968).

    Article  PubMed  CAS  Google Scholar 

  4. H. E. Lehmann, Clinical perspectives on antidepressant therapy, Amer. J. Psychiat. (May Suppl.):12–21 (1968).

    Google Scholar 

  5. J. O. Cole and J. M. Davis, in Comprehensive Textbook of Psychiatry (A. M. Freedman and H. I. Kaplan, eds.), pp. 1263–1275, Williams and Wilkins Co., Baltimore (1967).

    Google Scholar 

  6. G. L. Klerman and J. O. Cole, Clinical pharmacology of imipramine and related antidepressant compounds, Pharmacol. Rev. 17:101–141 (1965).

    PubMed  CAS  Google Scholar 

  7. A. Hordern, The antidepressant drugs, New Eng. J. Med. 272:1159–1169 (1965).

    Article  PubMed  CAS  Google Scholar 

  8. F. E. Bloom and N. J. Giarman, Physiologic and pharmacologic considerations of biogenic amines in the nervous system, Ann. Rev. Pharm. 8:229–258 (1968).

    Article  CAS  Google Scholar 

  9. J. J. Schildkraut and S. S. Kety, Biogenic amines and emotion, Science 156:21–30 (1967).

    Article  PubMed  CAS  Google Scholar 

  10. D. X. Freedman, in Psychiatric Drugs (P. Solomon, ed.), pp. 32–57, Grune and Stratton, New York (1966).

    Google Scholar 

  11. A. Pletscher, in Psychopharmacology: A Review of Progress, 1957–1967 (D. H. Efron, ed.), pp. 649–654, U.S. Government Printing Office, Washington (1968).

    Google Scholar 

  12. E. B. Sigg, in Psychopharmacology: A Review of Progress, 1957–1967 (D. H. Efron, ed.), pp. 655–669, U.S. Government Printing Office, Washington (1968).

    Google Scholar 

  13. J. J. Schildkraut, The catecholamine hypothesis of affective disorders: A review of supporting evidence, Am. J. Psychiat. 122:509–522 (1965).

    PubMed  CAS  Google Scholar 

  14. W. E. Bunney, Jr. and J. M. Davis, Norepinephrine in depressive reactions, Arch. Gen. Psychiat. 13:483–494 (1965).

    Article  PubMed  CAS  Google Scholar 

  15. J. Durell and J. J. Schildkrfaut, in American Handbook of Psychiatry III (S. Arieti, ed.), pp. 423–457, Basic Books, New York (1966).

    Google Scholar 

  16. J. Crossland, Psychotropic drugs and neurohumoral substances in the central nervous system, Progr. Med. Chem. 5:251–319 (1967).

    Article  CAS  Google Scholar 

  17. L. Gyermek, The pharmacology of imipramine and related antidepressants, Int. Rev. Neurobiol. 9:95–143 (1966).

    Article  PubMed  CAS  Google Scholar 

  18. J. J. Schildkraut, J. M. Davis, and G. L. Klerman, in Psychopharmacology. A Review of Progress, 1957–1967 (D. H. Efron, ed.), pp. 625–648, U.S. Government Printing Office, Washington, D.C. (1968).

    Google Scholar 

  19. Committee on Nomenclature and Statistics of the American Psychiatric Association. Diagnostic and Statistical Manual of Menial Disorders. 2nd ed. American Psychiatric Association, Washington (1968).

    Google Scholar 

  20. R. Kuhn, The treatment of depressive states with G22355 (imipramine hydrochloride), Am. J. Psychiat. 115:459–464 (1958).

    PubMed  CAS  Google Scholar 

  21. L. G. Kiloh, J. R. B. Ball, and R. F. Garside, Prognostic factors in treatment of depressive states with imipramine, Brit. Med. J. 1:1225–1227 (1962).

    Article  PubMed  CAS  Google Scholar 

  22. M. Greenblatt, G. H. Grosser, and H. Wechsler, Differential response of hospitalized depressed patients to somatic therapy, Am. J. Psychiat. 120:935–943 (1964).

    PubMed  CAS  Google Scholar 

  23. G. Winokur and P. Clayton, Family history studies I. Two types of affective disorders separated according to genetic and clinical factors, Rec. Adv. Biol. Psychiat. 9:35–50 (1967).

    Article  Google Scholar 

  24. C. Perris, A study of bipolar (manic-depressive) and unipolar recurrent depressive psychoses, Acta Psychiat. Scand. Suppl. 194, 42 (1966).

    Google Scholar 

  25. J. Angst, Zur Ätiologie und Nosologie endogener depressiver Psychosen, Monogr. Gesamtgeb. Neurol. Psychiatrie, Heft 112, (1966).

    Google Scholar 

  26. J. D. Rainer, in Proceedings of the Research Conference on The Depressive Group of Illnesses (G. J. Sarwer-Foner, ed.) Can.Psychiat. Assoc. J. 11 (GWAN Suppl.), S29–S33 (1966).

    Google Scholar 

  27. G. E. Crane, Iproniazid (marsilid) phosphate, a therapeutic agent for mental disorders and debilitating diseases, Psychiat. Res. Rep. Am. Psychiat. Assn. 8:142–152 (1957).

    CAS  Google Scholar 

  28. H. P. Loonier, J. C. Saunders, and N. S. Kline, A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer, Psychiat. Res. Rep. Am. Psychiat. Assn. 8:129–141 (1957).

    Google Scholar 

  29. E. D. West and P. J. Dally, Effects of iproniazid in depressive syndromes, Brit. Med. J. 1:1491–1494 (1959).

    Article  PubMed  CAS  Google Scholar 

  30. C. M. B. Pare, L. Rees, and M. J. Sainsbury, Differentiation of two genetically specific types of depression by the response to antidepressants, Lancet 11:1340–1343 (1962).

    Article  Google Scholar 

  31. J. J. Schildkraut, R. Green, E. K. Gordon, and J. Durell, Normetanephrine excretion and affective state in depressed patients treated with imipramine, Am. J. Psychiat. 123:690–700 (1966).

    PubMed  CAS  Google Scholar 

  32. P. B. Dews, A behavioral output enhancing effect of imipramine in pigeons, Int. J. Neuropharmacol. 1:265–272 (1962).

    Article  CAS  Google Scholar 

  33. M. Fink, D. F. Klein, and J. C. Kramer, Clinical efficacy of chlorpromazine-procyclidine combination, imipramine and placebo in depressive disorders, Psychopharmacologia 7:27–36 (1965).

    Article  PubMed  CAS  Google Scholar 

  34. L. E. Hollister and J. E. Overall, Phenothiazine derivatives as antidepressants, Agressologie 4:289–292 (1968).

    Google Scholar 

  35. E. S. Paykel, J. S. Price, R. U. Gillan, G. Palmai, and E. S. Chessner, A comparative trial of imipramine and chlorpromazine in depressed patients, Brit. J. Psychiat. 114:1281–1297 (1968).

    Article  PubMed  CAS  Google Scholar 

  36. A. Raskin, High dosage chlorpromazine alone and in combination with an antiparkinsonian agent (procyclidine) in the treatment of hospitalized depressions, J. Nerv. Ment. Dis. 147:184–195 (1968).

    Article  PubMed  CAS  Google Scholar 

  37. B. Weiss and V. G. Laties, Enhancement of human performance by caffeine and the amphetamines, Pharmacol. Rev. 14:1–36 (1962).

    PubMed  CAS  Google Scholar 

  38. L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics. 2nd ed., pp. 361, 518, Macmillan, New York (1955).

    Google Scholar 

  39. J. F. J. Cade, Lithium salts in the treatment of psychotic excitement, Med. J. Australia 2:349–352 (1949).

    PubMed  CAS  Google Scholar 

  40. P. C. Baastrup and M. Schou, Lithium as a prophylactic agent, Arch. Gen. Psychiat. 16:162–172(1967).

    Article  PubMed  CAS  Google Scholar 

  41. B. Blackwell and M. Shepherd, Prophylactic lithium: Another therapeutic myth? An examination of the evidence to date, Lancet: 1:968–971 (1968).

    Article  PubMed  CAS  Google Scholar 

  42. R. R. Fieve, S. R. Platman, and R. R. Plutchik, The use of lithium in affective disorders: I. Acute endogenous depression. II. Prophylaxis of depression in chronic recurrent affective disorder, Am. J. Psychiat. 125:487–498 (1968).

    PubMed  CAS  Google Scholar 

  43. B. B. Brodie, in The Scientific Basis of Drug Therapy in Psychiatry (J. Marks and C. M. B. Pare, eds.), pp. 127–154, Pergamon Press, Oxford (1965).

    Google Scholar 

  44. R. W. P. Achor, N. O. Hanson, and R. W. Gifford, Jr., Hypertension treated with rauwolfia serpentina (whole root) and with reserpine, JAMA 159:841–845 (1955).

    Article  CAS  Google Scholar 

  45. J. C. Müller, W. W. Pryor, J. E. Gibbons, and E. S. Orgain, Depression and anxiety occurring during rauwolfia therapy, JAMA 159:836–839 (1955).

    Article  Google Scholar 

  46. G. Lemieux, A. Davignon, and J. Genest, Depressive states during rauwolfia therapy for arterial hypertension: A report of 30 cases, Can. Med. Assn. J. 74:522–526 (1956).

    CAS  Google Scholar 

  47. T. H. Harris, Depression induced by rauwolfia compounds, Am. J. Psychiat. 113:950(1957).

    PubMed  CAS  Google Scholar 

  48. M. Chessin, E. R. Kramer, and C. T. Scott, Modification of the pharmacology of reserpine and serotonin by iproniazid, J. Pharmacol. Exptl. Therap. 119:453–460 (1957).

    CAS  Google Scholar 

  49. F. Sulser, M. H. Bickel, and B. B. Brodie, The action of desmethylimipramine in counteracting sedation and cholinergic effects of reserpine-like drugs, J. Pharmacol. Exptl. Therap. 144:321–330(1964).

    CAS  Google Scholar 

  50. A. Randrup and W. Jonas, Brain dopamine and the amphetaminereserpine interaction, J. Pharm. Pharmacol. 19:483–484 (1967).

    Article  PubMed  CAS  Google Scholar 

  51. M. G. Gelder and J. R. Vane, Interaction of the effects of tyramine, amphetamine and reserpine in man, Psychopharmacologia 3:231–241 (1962).

    Article  PubMed  CAS  Google Scholar 

  52. K. Engleman and A. Sjoerdsma, Inhibition of catecholamine biosynthesis in man, Circulat. Res. 18:1104–1108 (1966).

    Google Scholar 

  53. K. Engelman, D. Horwitz, E. Jequier, and A. Sjoerdsma, Biochemical and pharmacologic effects of α-methyltyrosine in man, J. Clin. Invest. 47:577–594 (1968).

    Article  PubMed  CAS  Google Scholar 

  54. S. Spector, A. Sjoerdsma, and S. Udenfriend, Blockade of endogenous norepinephrine synthesis by α-methyltyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exptl. Therap. 147:86–95 (1965).

    CAS  Google Scholar 

  55. K. E. Moore and R. H. Rech, Antagonism by monoamine oxidase inhibitors of α-methyltyrosine-induced catecholamine depletion and behavioral depression, J. Pharmacol. Exp. Ther. 156:70–75 (1967).

    PubMed  CAS  Google Scholar 

  56. H. Corrodi and L. C. F. Hanson, Central effects of an inhibitor of tyrosine hydroxylation, Psychopharmacologia 10:116–125 (1966).

    Article  PubMed  CAS  Google Scholar 

  57. L. C. F. Hanson, The disruption of conditioned avoidance response following selective depletion of brain catechol amines, Psychopharmacologia 8:100–110 (1965).

    Article  PubMed  CAS  Google Scholar 

  58. K. E. Moore, Effects of α-methyltyrosine on brain catecholamines and conditioned behavior in guinea pigs, Life Sci. 5:55–65 (1966).

    Article  PubMed  CAS  Google Scholar 

  59. R. H. Rech, H. E. Borys, and K. E. Moore, Alterations in behavior and brain catecholamine levels in rats treated with a-methyltyrosine, J. Pharmacol. Exptl. Therap. 153:412–419 (1966).

    CAS  Google Scholar 

  60. D. H. Efron, ed. Psychopharmacology: A Review of Progress, 1957–1967. U.S. Government Printing Office, Washington, D.C. (1968).

    Google Scholar 

  61. A. Lajtha, ed. Handbook of Neurochemistry, 7 Vols., Plenum Press, New York (1969–1971).

    Google Scholar 

  62. J. Glowinski and R. J. Baldessarini, Metabolism of norepinephrine in the central nervous system, Pharmacol. Rev. 18:1201–1238 (1966).

    PubMed  CAS  Google Scholar 

  63. S. Garattini and L. Valzelli, Serotonin. Elsevier, Amsterdam (1965).

    Google Scholar 

  64. G. H. Acheson, Second Symposium on Catecholamines. Reprinted from Pharmacol. Rev. 18, March, 1966. Williams and Wilkins, Co., Baltimore (1966).

    Google Scholar 

  65. E. Costa and M. Sandler, eds. Advances in Pharmacology, Vol. 6A & 6B, Academic Press, New York (1968).

    Google Scholar 

  66. G. C. Salmoiraghi and C. N. Stefanis, A critique of iontophoretic studies of central nervous system neurons, Int. Rev. Neurobiol. 10:1–30 (1967).

    Article  PubMed  CAS  Google Scholar 

  67. M. Vogt, The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs, J. Physiol. 123:451–481 (1954).

    PubMed  CAS  Google Scholar 

  68. U. S. von Euler, Noradrenaline. Charles C Thomas, Springfield, Ill. (1956).

    Google Scholar 

  69. M. Vogt, Catecholamines in the brain, Pharmacol. Rev. 11:483–489 (1959).

    PubMed  CAS  Google Scholar 

  70. A. Carlsson, M. Lindqvist, and T. Magnusson, in Adrenergic Mechanisms (J. R. Vane, G. E. W. Wolstenholme, and M. O’Connor, eds.), pp. 432–439, Little, Brown and Co., Boston (1960).

    Google Scholar 

  71. T. B. B. Crawford, in 5-Hydroxy tryptamine (G. P. Lewis, ed.), pp. 20–25, Pergamon Press, New York (1958).

    Google Scholar 

  72. J. Crossland, in The Clinical Chemistry of Monoamines (H. Varley and A. H. Gowenlock, eds.), pp. 175–190, Elsevier, Amsterdam (1963).

    Google Scholar 

  73. H. McLennan, Synaptic Transmission, Saunders, Philadelphia, 1963.

    Google Scholar 

  74. B. Falck, in Progress in Brain Research, VIII, “Biogenic Amines.” (H. E. Himwich and W. A. Himwich, eds.), pp. 28–44, Elsevier, Amsterdam (1964).

    Google Scholar 

  75. N. A. Hillarp, K. Fuxe, and A. Dahlstrom, Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev. 18:727–741 (1966).

    PubMed  CAS  Google Scholar 

  76. B. B. Brodie and P. A. Shore, A concept for a role of serotonin and norepinephrine as chemical mediators in the brain, Ann. N.Y. Acad. Sci. 66:631–642 (1957)

    Article  PubMed  CAS  Google Scholar 

  77. N. J. Giarman, Neurohumors in the brain, Yale J. Biol. Med. 32:73–92 (1959).

    PubMed  CAS  Google Scholar 

  78. S. Udenfriend, in Second Symposium on Catecholamines (G. H. Acheson, ed.), pp. 43–51 (Pharmacol. Rev. 18), Williams and Wilkins Co., Baltimore (1966).

    Google Scholar 

  79. S. Spector, in Second Symposium on Catecholamines (G. H. Acheson, ed.), pp. 599–609 (Pharmacol. Rev. 18), Williams and Wilkins, Co., Baltimore (1966).

    Google Scholar 

  80. S. Spector, R. Gordon, A. Sjoerdsma, and S. Udenfriend, Endproduct inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis, Molec. Pharmacol. 3:549–555 (1967).

    CAS  Google Scholar 

  81. I. J. Kopin, in Second Symposium on Catecholamines (G. H. Acheson, ed.), pp. 513–523 (Pharmacol. Rev. 18), Williams and Wilkins Co., Baltimore (1966).

    Google Scholar 

  82. K. J. Blackburn, P. C. French, and R. J. Merrills, 5-Hydroxytryptamine uptake in rat brain in vitro, Life Sci. 6:1653–1663 (1967).

    Article  PubMed  CAS  Google Scholar 

  83. S. B. Ross and A. L. Renyi, Accumulation of tritiated 5-hydroxytryptamine in brain slices, Life Sci. 6:1407–1415 (1967).

    Article  PubMed  CAS  Google Scholar 

  84. I. J. Kopin, Storage and metabolism of catecholamines: The role of monoamine-oxidase. Pharmacol. Rev. 16:179–191 (1964).

    PubMed  CAS  Google Scholar 

  85. J. Axelrod, in Second Symposium on Catecholamines (G. H. Acheson, ed.), pp. 95–113 (Pharmacol. Rev. 18), Williams and Wilkins Co., Baltimore (1966).

    Google Scholar 

  86. M. D. Armstrong, A. McMillan, and K. N. F. Shaw, 3-Methoxy-4-hydroxy-0-mandelic acid: A urinary metabolite of norepinephrine, Biochim. Biophys. Acta 25:422–423 (1957).

    Article  PubMed  CAS  Google Scholar 

  87. E. Mannarino, N. Kirschner, and B. S. Nashold, Jr. The metabolism of (C-14) noradrenaline by cat brain in vivo, J. Neurochem. 10:373–379 (1963).

    Article  CAS  Google Scholar 

  88. J. Axelrod, I. J. Kopin, and J. D. Mann, 3-Methoxy-4-hydroxyphenylglycol sulfate, a new metabolite of epinephrine and norepinephrine, Biochim. Biophys. Acta 36:576–577 (1959).

    Article  PubMed  CAS  Google Scholar 

  89. S. M. Schanberg, J. J. Schildkraut, G. R. Breese, and I. J. Kopin, Metabolism of normetanephrine-H3 in rat brain: Identification of conjugated 3-methoxy-4-hydroxyphenylglycol as the major metabolite, Biochem. Pharmacol. 17:247–254 (1968).

    Article  PubMed  CAS  Google Scholar 

  90. S. M. Schanberg, G. R. Breese, J. J. Schildkraut, E. K. Gordon, and I. J. Kopin, 3-Methoxy-4-hydroxyphenylglycol sulfate in brain and cerebrospinal fluid, Biochem. Pharmacol. 17:2005–2008 (1968).

    Google Scholar 

  91. J. W. Maas and D. H. Landis, in vivo studies of the metabolism of norepinephrine in the central nervous system, J. Pharmacol. Exptl. Therap. 163:147–162 (1968).

    CAS  Google Scholar 

  92. H. Blaschko, in 5-Hydroxytryptamine (G. P. Lewis, ed.), pp. 50–57, Pergamon Press, Oxford (1958).

    Google Scholar 

  93. S. Udenfriend, in 5-Hydroxytryptamine (G. P. Lewis, ed.), pp. 43–49, Pergamon Press, Oxford, 1958.

    Google Scholar 

  94. E. B. Sigg, Pharmacological studies with tofranil, Can. Psychiat. Ass. J. 4:S75–S85 (1959).

    Google Scholar 

  95. R. W. Ryall, Effects of cocaine and anti-depressant drugs on nictitating membrane of the cat, Brit. J. Pharmacol. 17:339–357 (1961).

    PubMed  CAS  Google Scholar 

  96. E. B. Sigg, L. Soffer, and L. Gyermek, Influence of imipramine and related psychoactive agents on the effect of 5-hydroxytryptamine and catecholamines on the cat nictitating membrane, J. Pharmacol. Exptl. Therap. 142:13–20 (1963).

    CAS  Google Scholar 

  97. H. Thoenen, A. Hürlimann, and W. Haefely, Mode of action of imipramine and 5-(3′ methylaminopropyliden)dibenzo(a,e) cyclohepta (1,3,5)trien hydrochloride (Ro 4–6011), a new antidepressant drug, on peripheral adrenergic mechanisms, J, Pharmacol. Exptl. Therap. 144:405–414 (1964).

    CAS  Google Scholar 

  98. L. Gyermek, in Antidepressant Drugs of Non-MAO Inhibitor Type (D. H. Efron and S. S. Kety, eds.), pp. 41–62, Workshop of Pharmacology Unit, NIMH, No. 1 (1968).

    Google Scholar 

  99. S. Gershon, G. Holmberg, E. Mattsson, N. Mattsson, and A. Marshall, Imipramine hydrochloride, Arch. Gen. Psychiat. 6:96–102 (1962).

    Article  PubMed  CAS  Google Scholar 

  100. A. J. Prange, Jr., E. Postrom, and C. M. Cochrane, Imipramine enhancement of norepinephrine in normal humans, Psychiat. Digest 125 (1964).

    Google Scholar 

  101. N. Svednyr, The influence of a tricyclic antidepressive agent (protriptyline) on some of the circulatory effects of noradrenaline and adrenaline in man, Life Sci. 7:77–88 (1968).

    Article  Google Scholar 

  102. G. Hertting, J. Axelrod, and L. G. Whitby, Effect of drugs on the uptake and metabolism of 3H-norepinephrine, J. Pharmacol. Exp. Ther. 134:146–153 (1961).

    CAS  Google Scholar 

  103. H. G. Dengler, H. E. Spiegel, and E. O. Titus, Effect of drugs on uptake of isotopic norepinephrine by cat tissues, Nature 191:816–817 (1961).

    Article  PubMed  CAS  Google Scholar 

  104. J. Glowinski and J. Axelrod, Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and related compounds, Nature 204:1318–1319 (1964).

    Article  PubMed  CAS  Google Scholar 

  105. A. Carlsson and B. Waldeck, Mechanism of amine transport in the cell membranes of the adrenergic nerves, Acta Pharmacol. 22:293–300 (1965).

    Article  CAS  Google Scholar 

  106. J. J. Schildkraut, G. A. Dodge, and M. A. Logue, Effects of tricyclic antidepressants on the uptake and metabolism of intracisternally administered norepinephrine-H3 in rat brain, J. Psychiat. Res. (In press.)

    Google Scholar 

  107. G. Stille, Pharmacological investigation of antidepressant compounds, Pharmakopsychiatrie Neuro-Psychopharmakologie 1:92–106 (1968).

    CAS  Google Scholar 

  108. A. Carlsson, K. Fuxe, B. Hamberger, and M. Lindqvist, Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67:481–497 (1966).

    Article  PubMed  CAS  Google Scholar 

  109. J. Glowinski, J. Axelrod, and L. Iversen, Regional studies of catecholamines in the rat brain IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine, J. Pharmacol. Exp. Ther. 153:30–41 (1966).

    PubMed  CAS  Google Scholar 

  110. S. B. Ross and A. L. Renyi, Uptake of some tritiated sympathomimetic amines by mouse brain cortex slices in vitro. Acta Pharmacol. (Kobenhavri) 24:297–309 (1966).

    Article  CAS  Google Scholar 

  111. T. Segawa and I. Kuruma, The influence of drugs on the uptake of 5-hydroxytryptamine by nerve-ending particles of rabbit brain stem, J. Pharm. Pharmac. 20:320–322 (1968).

    Article  CAS  Google Scholar 

  112. C. D. Wise and H. W. Ruelius, The binding of serotonin in brain: A study in vitro of the influence of physicochemical factors and drugs, Biochem. Pharmacol. 17:617–631 (1968).

    Article  PubMed  CAS  Google Scholar 

  113. J. M. Davis, R. Colburn, D. L. Murphy, and W. E. Bunney, Jr., in Scientific Proceedings, pp. 228–229, American Psychiatric Association (1968).

    Google Scholar 

  114. K. Fuxe and U. Ungerstedt, Localization of 5-hydroxytryptamine uptake in rat brain after intraventricular injection, J. Pharm. Pharmac. 19:335–337 (1967).

    Article  CAS  Google Scholar 

  115. A. Carlsson, K. Fuxe, and U. Understedt, The effect of imipramine on central 5-hydroxytryptamine neurons, J. Pharm. Pharmac. 20:150–151 (1968).

    Article  CAS  Google Scholar 

  116. D. Palaic, I. H. Page, and P. A. Khairallah, Uptake and metabolism of (14C) serotonin in rat brain, J. Neurochem. 14:63–69 (1967).

    Article  PubMed  CAS  Google Scholar 

  117. J. J. Schildkraut, S. M. Schanberg, G. R. Breese, and I. J. Kopin, Effects of psychoactive drugs on the metabolism of intracisternally administered serotonin in rat brain. Biochem. Pharmacol. (In press.)

    Google Scholar 

  118. E. Sanders-Bush and F. Sulser, Selective effect of drugs on brain serotonin at different functional “sites,” Pharmacologist 9:210 (1968).

    Google Scholar 

  119. J. Glowinski and J. Axelrod, Effects of drugs on the disposition of H3-norepi-nephrine in the rat brain, Pharmacol. Rev. 18:775–785 (1966).

    PubMed  CAS  Google Scholar 

  120. S. M. Schanberg, J. J. Schildkraut, and I. J. Kopin, The effects of psychoactive drugs on norepinephrine-H3 metabolism in brain, Biochem. Pharmacol. 16:393–399 (1967).

    Article  PubMed  CAS  Google Scholar 

  121. N. H. Neff and E. Costa, in Antidepressant Drugs (S. Garattini and M. N. G. Dukes, eds.), pp. 28–34, Excerpta Medica, Amsterdam (1967).

    Google Scholar 

  122. H. Corrodi and K. Fuxe, The effect of imipramine on central monoamine neurons. J. Pharm. Pharmac. 20:230–231 (1968).

    Article  CAS  Google Scholar 

  123. H. Corrodi, K. Fuxe, and T. Hökfelt, The effect of some psychoactive drugs on central monoamine neurons. Europ. J. Pharmacol. 1:363–368 (1967).

    Article  CAS  Google Scholar 

  124. J. Jonason and C. O. Rutledge, The effect of protriptyline on the metabolism of dopamine and noradrenaline in rabbit brain in vitro, Acta Physiol. Scand. 73:161–175 (1968).

    Article  PubMed  CAS  Google Scholar 

  125. J. J. Schildkraut, G. L. Klerman, R. Hammond, and D. G. Friend, Excretion of 3-methoxy-4-hydroxymandelic acid (VMA) in depressed patients treated with anti-depressant drugs, J. Psychiat. Res. 2:257–266 (1964).

    Article  CAS  Google Scholar 

  126. J. J. Schildkraut, E. K. Gordon, and J. Durell, Catecholamine metabolism in affective disorders: I. Normetanephrine and VMA excretion in depressed patients treated with imipramine, J. Psychiat. Res. 3:213–228 (1965).

    Article  PubMed  CAS  Google Scholar 

  127. R. Pulver, B. Exer, and B. Herrmann, Einige Wirkungen des N-(y-dimethylaminopropyl)-iminodibenzyl-HCl und seiner Metabolite auf den Stoffwechsel von Neurohormonen. Arzneimittel-Forschung 10:530–533 (1960).

    PubMed  CAS  Google Scholar 

  128. S. Gabay and A. J. Valcourt, in Recent Advances in Biological Psychiatry (J. Wortis, ed.), Vol. X, pp. 29–41, Plenum Press, New York (1968).

    Google Scholar 

  129. M. DaPrada and A. Pletscher, On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels, J. Pharm. Pharmac. 18:628–630 (1966).

    Article  CAS  Google Scholar 

  130. D. Eccleston, Personal communication.

    Google Scholar 

  131. L. Haskovec and K. Rysanek, Excretion of 3-methoxy-4-hydroxymandelic acid and 5-hydroxyindoleacetic acid in depressed patients treated with imipramine, J. Psychiat. Res. 5:213–220 (1967).

    Article  Google Scholar 

  132. W. v. Haefely, A. Hürlimann, and H. Thoenen, Scheinbar paradoxe Beeinflussung von peripheren Noradrenalinwirkungen durch einige Thymoleptica, Helv. Physiol. Acta 22:15–33 (1964).

    CAS  Google Scholar 

  133. A. Pletscher, in Neuropsychopharmacology (H. Brill, J. O. Cole, P. Deniker, H. Hippius and P. B. Bradley, eds.), pp. 571–577, Excerpta Medica, Amsterdam (1967).

    Google Scholar 

  134. E. A. Zeller and J. Barsky, In vivo inhibition of liver and brain monoamine oxidase by l-isonicotinyl-2-isopropyl hydrazine, Proc. Soc. Exptl. Biol. Med. 81:459–461 (1952).

    CAS  Google Scholar 

  135. A. Sjoerdsma, L. Gillespie, Jr., and S. Udenfriend, A simple method for the measurement of monoamine-oxidase inhibitors in man, Lancet 11:159–160 (1958).

    Article  Google Scholar 

  136. W. v. Studnitz, Effect of marsilid on excretion of 3-methoxy-4-hydroxymandelic acid in man, Scand. J. Clin. Lab. Invest. 11:224–225 (1959).

    Article  Google Scholar 

  137. S. Spector, in Psychopharmacology: A Review of Progress, 1957–1967 (D. H. Efron, ed.), pp. 13–16, U.S. Government Printing Office, Washington, D.C. (1968).

    Google Scholar 

  138. N. H. Neff and E. Costa, Application of steady-state kinetics to the study of catecholamine turnover after monoamine oxidase inhibition or reserpine administration, J. Pharmacol. Exptl. Therap. 160:40–47 (1968).

    CAS  Google Scholar 

  139. S. S. Kety, in Ultrastructure and Metabolism of the Nervous System (S. R. Korey, A. Pope and E. Robbins, eds.), pp. 311–324, Williams and Wilkins Co., Baltimore (1962).

    Google Scholar 

  140. S. Spector, P. A. Shore, and B. B. Brodie, Biochemical and pharmacological effects of the monoamine oxidase inhibitors, iproniazid, 1-phenyl-2-hydrazinopropane (JB516) and 1-phenyl-3-hydrazinobutane (JB835), J. Pharmacol. Exptl. Therap. 128:15–21 (1960).

    CAS  Google Scholar 

  141. S. Spector, C. W. Hirsch, and B. B. Brodie, Association of behavioral effects of pargyline, a non-hydrazide MAO inhibitor with increase in brain norepinephrine, Int. J. Neuropharmacol. 2:81–93 (1963).

    Article  CAS  Google Scholar 

  142. G. M. Everett and R. G. Wiegand, in Proceedings of the First International Pharmacological Meeting (W. D. M. Paton and P. Lindgren, eds.), Vol. 8, pp. 85–95, Pergamon Press, New York (1962).

    Google Scholar 

  143. H. Green and R. W. Erickson, Further studies with tranylcypromine (monoamine oxidase inhibitor) and its interaction with reserpine in rat brain, Arch. Int. Pharmacodynam. 135:407–425 (1962).

    CAS  Google Scholar 

  144. H. Corrodi, Blockade of the psychotic syndrome caused by nialamide in mice, J. Pharm. Pharmacol. 18:197–199 (1966).

    Article  PubMed  CAS  Google Scholar 

  145. L. Stein and O. S. Ray, Accelerated recovery from reserpine depression by monoamine oxidase inhibitors, Nature 188:1199–1200 (1960).

    Article  CAS  Google Scholar 

  146. A. Carlsson, in Proceedings of the Second Meeting of the Collegium Internationale Neuro-psychopharmacologicum (E. Rothlin, ed.), pp. 417–421, Elsevier, New York (1961).

    Google Scholar 

  147. F. G. Graeff, J. G. Leme, and M. Rocha e Silva, Role played by catechol and indoleamines in the central actions of reserpine after monoamine oxidase inhibition, Int. J. Neuropharmacol. 4:17–26 (1965).

    Article  PubMed  CAS  Google Scholar 

  148. I. J. Kopin, in Psychopharmacology: A Review of Progress, 1957–1967 (D. H. Efron, ed.), pp. 57–60, U.S. Government Printing Office, Washington, D.C. (1968).

    Google Scholar 

  149. Y. Kakimoto and M. Armstrong, On the identification of octopamine in mammals, J. Biol. Chem. 237:422–427 (1962).

    PubMed  CAS  Google Scholar 

  150. A. A. Shatalova and E. K. Antonov, Content of adrenaline and noradrenaline in adrenal and brain tissues and in the blood of rabbits in convulsive states, Psychopharmacol. Abstr. 1:341 (1961).

    Google Scholar 

  151. C. Breitner, A. Picchioni, and L. Chin, Neurohormone levels in brain after CNS stimulation including electrotherapy. J. Neuropsychiat. 5:153–158 (1964).

    PubMed  CAS  Google Scholar 

  152. S. Garattini and L. Valzelli, in Psychotropic Drugs (S. Garattini and V. Ghetti, eds.), pp. 428–436, Elsevier, Amsterdam (1957).

    Google Scholar 

  153. S. Garattini, R. Kato, L. Lamesta, and L. Valzelli, Electroshock, brain serotonin and barbiturate narcosis, Experientia 16:156 (1960).

    Article  PubMed  CAS  Google Scholar 

  154. C. Breitner, A. Picchioni, L. Chin, and L. E. Burton, The effect of electrostimulation on brain 5-hydroxytryptamine concentration, Dis. Nerv. Syst. 22 (April Suppl.): 93–96 (1961).

    CAS  Google Scholar 

  155. D. D. Bonneycastle, N. J. Giarman, and M. K. Paasonen, Anticonvulsant compounds and 5-hydroxytryptamine in rat brain, Brit. J. Pharmacol. 12:228–231 (1957).

    Google Scholar 

  156. D. X. Freedman, Psychotomimetic drugs and brain biogenic amines, Am. J. Psychiat. 119:843–850 (1963).

    PubMed  CAS  Google Scholar 

  157. E. W. Maynert and R. Levi, Stress-induced release of brain norepinephrine and its inhibition by drugs, J. Pharmacol. Exptl. Therap. 143:90–95 (1964).

    CAS  Google Scholar 

  158. R. K. Hinesley, J. A. Norton, and M. H. Aprison, Serotonin, norepinephrine and 3,4-dihydroxyphenylethylamine in rat brain parts following electroconvulsive shock, J. Psychiat. Res. 6:143–152 (1968).

    Article  PubMed  CAS  Google Scholar 

  159. J. Engel, L. C. F. Hanson, B. E. Roos, and L. E. Strombergsson, Effect of electroshock on dopamine metabolism in rat brain, Psychopharmacologia 13:140–144 (1968).

    Article  PubMed  CAS  Google Scholar 

  160. A. J. Cooper, A. T. B. Moir, and H. C. Guldberg, The effect of electroconvulsive shock on the cerebral metabolism of dopamine and 5-hydroxytryptamine, J. Pharm. Pharmac. 20:729–730 (1968).

    Article  CAS  Google Scholar 

  161. J. J. Schildkraut, S. M. Schanberg, G. R. Breese, and I. J. Kopin, Norepinephrine metabolism and drugs used in the affective disorders: A possible mechanism of action, Am. J. Psychiat. 124:600–608 (1967).

    PubMed  CAS  Google Scholar 

  162. S. S. Kety, F. Javoy, A. M. Thierry, L. Julou, and J. Glowinski, A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat, Proc. Nat. Acad. Sci. 58:1249–1254 (1967).

    Article  PubMed  CAS  Google Scholar 

  163. A. M. Thierry, F. Javoy, J. Glowinski, and S. S. Kety, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat, I. Modifications of norepinephrine turnover, J. Pharmacol. Exptl. Therap. 163:159–171 (1968).

    Google Scholar 

  164. L. Stein, Self-stimulation of the brain and the central stimulant action of amphetamine, Fed. Proc. 23:836–850 (1964).

    PubMed  CAS  Google Scholar 

  165. J. Glowinski and J. Axelrod, The effect of drugs on the uptake, release and metabolism of H3-norepinephrine in the rat brain, J. Pharmacol. Exptl. Therap. 149:43–49 (1965).

    CAS  Google Scholar 

  166. C. B. Smith, Effects of d-amphetamine upon brain amine content and locomotor activity of mice, J. Pharmacol. Exptl. Therap. 147:96–102 (1965).

    CAS  Google Scholar 

  167. J. McLean and M. McCartney, Effect of d-amphetamine on rat brain noradrenaline and serotonin, Proc. Soc. Exptl. Biol. Med. 107:77–79 (1961).

    CAS  Google Scholar 

  168. S. Sanan and M. Vogt, Effects of drugs on the noradrenaline content of brain and peripheral tissues and its significance. Brit. J. Pharmacol. 18:109–127 (1962).

    PubMed  CAS  Google Scholar 

  169. K. E. Moore and E. W. Lariviere, Effects of d-amphetamine and restraint on the content of norepinephrine and dopamine in rat brain, Biochem. Pharmacol. 12:1283–1288 (1963).

    Article  PubMed  CAS  Google Scholar 

  170. J. Cook and S. Schanberg, Effect of methamphetamine on norepinephrine metabolism in brain, Pharmacologist 10:195 (1968).

    Google Scholar 

  171. J. R. Vane, in Adrenergic Mechanisms (J. R. Vane, G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 356–372, Little, Brown and Co., Boston (1960).

    Google Scholar 

  172. J. M. VanRossum, J. B. van der Schoot, and J. A. Th. M. Horkmans, Mechanism of action of cocaine and amphetamine in the brain, Experientia 18:229–231 (1962).

    Article  CAS  Google Scholar 

  173. A. Weissman, B. K. Koe, and S. S. Tenen, Antiamphetamine effects following inhibition of tyrosine hydroxylase, J. Pharmacol. Exptl. Therap. 151:339–352 (1966).

    CAS  Google Scholar 

  174. L. C. F. Hanson, Evidence that the central action of (+)-amphetamine is mediated via catecholamines, Psychopharmacologia 10:289–297 (1967).

    Article  PubMed  CAS  Google Scholar 

  175. F. Sulser, M. L. Owens, M. R. Norvich, and J. V. Dingell, The relative role of storage and synthesis of brain norepinephrine in the psychomotor stimulation evoked by amphetamine or by desipramine and tetrabenazine, Psychopharmacologia 12:322–332 (1968).

    Article  PubMed  CAS  Google Scholar 

  176. A. Randrup and J. Munkvad, Role of catecholamines in the amphetamine excitatory response, Nature 211:540 (1966).

    Article  PubMed  CAS  Google Scholar 

  177. L. Stein, in Antidepressant Drugs (S. Garattini and M. N. G. Dukes, eds.), pp. 130–140, Excerpta Medica, Amsterdam (1967).

    Google Scholar 

  178. K. E. Moore and R. H. Rech, Reversal of α-methyltyrosine-induced behavioural depression with dihydroxyphenylalanine and amphetamine, J. Pharm. Pharmac. 19:405–407 (1967).

    Article  CAS  Google Scholar 

  179. B. L. Welch and A. S. Welch, Stimulus-dependent antagonism of the α-methyltyrosine-induced lowering of brain catecholamines by (+)-amphetamine in intact mice. J. Pharm. Pharmacol. 19:841–843 (1967).

    Article  PubMed  CAS  Google Scholar 

  180. P. L. Carlton, Potentiation of behavioral effects of amphetamine by imipramine, Psychopharmacologia 2:364–376 (1961).

    Article  PubMed  CAS  Google Scholar 

  181. A. Weissman, Interaction effects of imipramine and d-amphetamine on nondiscriminated avoidance, Pharmacologist 3:60 (1961).

    Google Scholar 

  182. C. L. Scheckel and E. Boff, Behavioral effects of interacting imipramine and other drugs with d-amphetamine, cocaine and tetrabenazine, Psychopharmacologia 5:198–208 (1964).

    Article  PubMed  CAS  Google Scholar 

  183. F. Sulser, M. L. Owens, and J. V. Dingell, On the mechanism of amphetamine potentiation by desipramine (DMI), Life Sci. 5:2005–2010 (1966).

    Article  CAS  Google Scholar 

  184. L. Valzelli, S. Consolo, and C. Morpurgo, in Antidepressant Drugs (S. Garattini and M. N. G. Dukes, eds.), pp. 61–69, Excerpta Medica, Amsterdam (1967).

    Google Scholar 

  185. U. Trendelenburg, The supersensitivity caused by cocaine. J. Pharmacol. Exptl. Therap. 125:55–65(1961).

    Google Scholar 

  186. A. Pletscher, P. A. Shore, and B. B. Brodie, Serotonin release as a possible mechanism of reserpine action, Science 122:374–375 (1955).

    Article  PubMed  CAS  Google Scholar 

  187. A. Bertler, A. Carlsson, and E. Rosengren, Release by reserpine of catechol amines from rabbits’ hearts, Naturwissenschaften 43:521 (1956).

    Article  CAS  Google Scholar 

  188. M. Holzbauer and M. Vogt, Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat, J. Neurochem. 1:8–11 (1956).

    Article  PubMed  CAS  Google Scholar 

  189. P. A. Shore, Release of serotonin and catecholamines by drugs, Pharmacol. Rev. 14:531–550(1962).

    PubMed  CAS  Google Scholar 

  190. P. A. Shore, in Handbook of Neurochemistry, Vol. VI (A. Lajtha, ed.), Plenum Press, New York. (In preparation.)

    Google Scholar 

  191. C. O. Rutledge and N. Weiner, The effect of reserpine upon synthesis of norepinephrine in the isolated rabbit heart, J. Pharmacol. Exptl. Therap. 157:290–302 (1967).

    CAS  Google Scholar 

  192. I. J. Kopin and V. K. Weise, Effect of reserpine and metarminol on excretion of homovanillic acid and 3-methoxy-4-hydroxyphenylglycol in the rat, Biochem. Pharmacol 17:1461–1464 (1968).

    Article  PubMed  CAS  Google Scholar 

  193. R. H. Roth and E. A. Stone, The action of reserpine on noradrenaline biosynthesis in sympathetic nerve tissue. Biochem. Pharmacol, 17:1581–1590 (1968).

    Article  PubMed  CAS  Google Scholar 

  194. I. J. Kopin and E. K. Gordon, Metabolism of norepinephrine-H3 released by tyramine and reserpine, J. Pharmacol. Exptl. Therap. 138:351–359 (1962).

    CAS  Google Scholar 

  195. I. J. Kopin and E. K. Gordon, Metabolism of administered and drug-released norepinephrine-7-H3 in the rat, J. Pharmacol. Exptl. Therap. 140:207–216 (1963).

    CAS  Google Scholar 

  196. J. N. Tozer, N. H. Neff, and B. B. Brodie, Application of steady state kinetics to the synthesis rate and turnover time of serotonin in the brain of normal and reserpinetreated rats, J. Pharmacol. Exptl. Therap. 153:177–182 (1966).

    CAS  Google Scholar 

  197. J. Häggendal and M. Lindqvist, Disclosure of labile monoamine fractions in brain and their correlation to behavior, Acta Physiol. Scand. 60:351–357 (1964).

    Article  Google Scholar 

  198. B. B. Brodie, M. S. Comer, E. Costa, and A. Dlabac, The role of brain serotonin in the mechanism of a central action of reserpine, J. Pharmacol. Exptl. Therap. 152: 340–349 (1966).

    CAS  Google Scholar 

  199. J. Glowinski, L. Iversen, and J. Axelrod, Storage and synthesis of norepinephrine in the reserpine-treated rat brain. J. Pharmacol. Exptl. Therap. 151:385–399 (1966).

    CAS  Google Scholar 

  200. A. Carlsson, M. Lindqvist, and T. Magnusson, 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists, Nature 180:1200 (1957).

    Article  PubMed  CAS  Google Scholar 

  201. G. M. Everett and J. E. P. Toman, in Biological Psychiatry (J. H. Masserman, ed.), pp. 78–81, Grune and Stratton, New York (1959).

    Google Scholar 

  202. P. L. McGeer, E. G. McGeer, and J. A. Wada, Central aromatic amine levels in behavior, II : Serotonin and catecholamine levels in various cat brain areas following administration of psychoactive drugs or amine precursors, Arch. Neurol. 9:81–89 (1963).

    Article  Google Scholar 

  203. J. A. Wada, J. Wrinch, D. Hill, P. L. McGeer, and E. G. McGeer, Central aromatic amine levels and behavior. I. Conditioned avoidance response in cats, following administration of psychoactive drugs or precursors, Arch. Neurol. 9:69–80 (1963).

    Article  PubMed  CAS  Google Scholar 

  204. R. Degkwitz, R. Frowein, C. Kulenkampff, and U. Mohs, Uber die Wirkungen des L-DOPA beim Menschen und deren Beeinflussung durch Reserpin, Chlorpromazin, Iproniazid und Vitamin B6, Klin. Wschr. 38:120–123 (1960).

    Article  PubMed  CAS  Google Scholar 

  205. C. R. Creveling, J. Daly, T. Tokuyama, and B. Witkop, The combined use of α-methyltyrosine and threo-dihydroxyphenylserine-selective reductions of dopamine levels in the central nervous system, Biochem. Pharmacol. 17:65–70 (1968).

    Article  PubMed  CAS  Google Scholar 

  206. A. Carlsson, Functional significance of drug-induced change in brain monoamine levels, in Biogenic Amines (H. E. Himwich and W. A. Himwich, eds.), pp.9–27, Elsevier, Amsterdam (1964).

    Chapter  Google Scholar 

  207. H. Green and J. L. Sawyer, in Biogenic Amines (H. E. Himwich and W. A. Himwich, eds.), pp. 150–167, Elsevier, Amsterdam (1964).

    Chapter  Google Scholar 

  208. A. Bertler, B. Falck, C. Owman, and E. Rosengren, The localization of monoaminegic blood-brain barrier mechanisms, Pharmacol. Rev. 18:369–385 (1966).

    PubMed  CAS  Google Scholar 

  209. B. K. Koe and A. Weissman, Marked depletion of brain serotonin by p-chlorophenylalanine, Fed. Proc. 25:452 (1966).

    Google Scholar 

  210. B. B. Brodie and W. D. Reid, Serotonin in brain: Functional considerations, Advances in Pharmacology 6B:97–113 (1968).

    Article  Google Scholar 

  211. A. Carlsson, Reporter’s remarks. Advances in Pharmacology 6B:115–119 (1968).

    Article  Google Scholar 

  212. F. Sulser, M. L. Owens, and J. V. Dingell, in vivo modification of biochemical effects of reserpine by desipramine in the hypothalamus of the rat, Pharmacologist 9:213 (1967).

    Google Scholar 

  213. W. Poldinger, Combined administration of desipramine and reserpine or tetrabenazine in depressive patients, Psychopharmacologia 4:308–310 (1963).

    Article  Google Scholar 

  214. P. Dick and P. Roch, in Antidepressant Drugs (S. Garattini and M. N. G. Dukes, eds.), pp. 311–315, Excerpta Medica, Amsterdam (1967).

    Google Scholar 

  215. L. Haskovec and K. Rysanek, The action of reserpine in imipramine resistant depressive patients, Psychopharmacologia 11:18–30 (1967).

    Article  PubMed  CAS  Google Scholar 

  216. J. J. Schildkraut, S. M. Schanberg, and I. J. Kopin, The effects of lithium ion on H3-norepinephrine metabolism in brain, Life Sci. 5:1479–1483 (1966).

    Article  PubMed  CAS  Google Scholar 

  217. H. Corrodi, K. Fuxe, T. Hökfelt, and M. Schou, The effect of lithium on cerebral monoamine neurons, Psychopharmacologia 11:345–353 (1967).

    Article  PubMed  CAS  Google Scholar 

  218. D. M. Stern, R. Fieve, N. Neff, and E. Costa, The effect of lithium on the turnover of brain and heart catecholamines, Pharmacologist 9:210 (1967).

    Google Scholar 

  219. J. J. Schildkraut, M. A. Logue, and G. A. Dodge, The effects of lithium salts on the turnover and metabolism of norepinephrine in rat brain, Psychopharmacologia 14:135–141 (1969).

    Article  PubMed  CAS  Google Scholar 

  220. K. Greenspan, M. Aronoff, and D. F. Bogdanski, Personal communication.

    Google Scholar 

  221. R. W. Colburn, F. K. Goodwin, W. E. Bunney, Jr., and J. M. Davis, Effect of lithium treatment on the uptake of norepinephrine by synaptosomes, Nature 215:1395–1397(1967).

    Article  PubMed  CAS  Google Scholar 

  222. L. Haskovec and K. Rysanek, Die Wirkung von Lithium auf den Metabolismus der Katecholamine und Indolalkylamine beim Menschen, Arzneimittel-Forschung. (In press.)

    Google Scholar 

  223. A. Anumonye, H. W. Reading, F. Knight, and G. W. Ashcroft, Uric acid metabolism in manic-depressive illness and during lithium therapy, Lancet 11:1290–1293 (1968).

    Article  Google Scholar 

  224. J. J. Schildkraut, in Recent Advances in the Psychobiology of Depressive IllnessesProceedings of NIMH Workshop, April 30-May 2, 1969 (T. Williams, ed.), U.S. Government Printing Office, Washington, D.C. (In press.)

    Google Scholar 

  225. R. Strom-Olsen and H. Weil-Malherbe, Humoral changes in manic-depressive psychosis with particular reference to the excretion of catechol amines in urine, J. Ment. Sci. 104:696–704 (1958).

    PubMed  CAS  Google Scholar 

  226. K. Greenspan, J. J. Schildkraut, E. K. Gordon, B. Levy, and J. Durell, Catecholamine metabolism in affective disorders II. Norepinephrine, normetanephrine, epinephrine, metanephrine and VMA excretion in hypomanic patients, Arch. Gen. Psychiat. (In press.)

    Google Scholar 

  227. J. W. Maas, J. Fawcett, and H. Dekirmenjian, 3-Methoxy-4-hydroxyphenylglycol (MHPG) excretion in depressive states: A pilot study, Arch. Gen. Psychiat. 19:129–134 (1968).

    Article  PubMed  CAS  Google Scholar 

  228. K. Greenspan, J. J. Schildkraut, E. K. Gordon, L. Baer, M. S. Aronoff, and J. Durell, Catecholamine metabolism in affective disorders III. MHPG and other catecholamine metabolites in patients treated with lithium carbonate. J. Psychiat. Res. (In press.)

    Google Scholar 

  229. G. W. Ashcroft, T. B. B. Crawford, D. Eccleston, D. F. Sharman, E. J. MacDougall, J. B. Stanton, and J. K. Binns, 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases, Lancet 11:1049–1054 (1966).

    Article  Google Scholar 

  230. S. J. Dencker, U. Malm, B. E. Roos, and B. Werdinius, Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. J. Neurochem. 13:1545–1548 (1966).

    Article  PubMed  CAS  Google Scholar 

  231. R. Rodnight, Body fluid indoles in mental illness. Int. Rev. Neurobiol. 3:251–292 (1961).

    Article  Google Scholar 

  232. A. Coppen, D. M. Shaw, A. Malleson, E. Eccleston, and G. Gundy, Tryptamine metabolism in depression, Brit. J. Psychiat. 111:993–998 (1965).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Schildkraut, J.J., Gershon, E.S. (1971). Antidepressants and Related Drugs. In: Lajtha, A. (eds) Alterations of Chemical Equilibrium in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7175-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7175-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7177-3

  • Online ISBN: 978-1-4615-7175-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics