Skip to main content

Biochemistry of Brain Tumors

  • Chapter
Handbook of Neurochemistry

Abstract

No general reviews of brain tumor biochemistry have been found in the literature, so this author presents the subject to the best of her understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Warburg, The Metabolism of Tumors, Constable and Co., London (1930).

    Google Scholar 

  2. L. Casamajor, Histologische Arbeiten der Grosshirnrinde, Nissl. Arb. 6: 52 (1918).

    Google Scholar 

  3. G. Marinesco, Sur la présence et les variations du glycogène dans le nevraxe et les glandes endocrines à l’état normal et pathologique, Ann. Anat. Path. 5: 233 (1928).

    Google Scholar 

  4. S. S. Kasabjan, Histochemical characteristics of glycogen in the tumor cells as a factor of malignity, Arch. Path. (Moscow) 13:(2) 34 (1951).

    Google Scholar 

  5. L. P. Lipcina, Histochemical investigation of the glycogen content in the arachnoidal endothelioma, Vopr. Neurochir. 16(3): 30 (1952).

    Google Scholar 

  6. R. Friede, Ãœber Glykogen und alkalischer Phosphatase in Hirntumoren und ihre biologische Bedeutung, Virchows Arch. Path. Anat. 328: 469 (1956).

    CAS  Google Scholar 

  7. T. Tajima, Histochemical study on polysaccharides of intracranial tumors, Acta Medica et Biologica (Jap.) 8: 137 (1960).

    CAS  Google Scholar 

  8. R. Friede, Über die Bindungsfähigkeit von Gewebsproteinen für Chondroitinsulfat-eine einfache histologische Protein-reaktion besonders für Nervengewebe, Virchows Arch. Path. Anat. 330: 574 (1957).

    CAS  Google Scholar 

  9. K. M. Earle, Histochemistry of brain tumors; a study of the PAS-positive substances in 486 intracranial neoplasms and 30 intraspinal neoplasms, Lab. Invest. 8: 665 (1959).

    PubMed  CAS  Google Scholar 

  10. A. E. Zlotnick, K. Weisenberg, and I. Chowers, Mucoproteins of CSF and blood in neurologic disorders, J. Lab. Clin. Med. 54: 207 (1959).

    PubMed  CAS  Google Scholar 

  11. N. J. Manno, W. F. McGuckin, and N. P. Goldstein, CSF total polysaccharide, Neurology 15: 49 (1965).

    PubMed  CAS  Google Scholar 

  12. H. H. Hess, L. J. Embree, and H. M. Shein, Biochemistry of normal astroglia and of virally and chemically induced astrocytomas grown subcutaneously. Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and C. Galli eds.) p. 42, Tamburini, Milan (1969).

    Google Scholar 

  13. H. O. Christensen Lou and J. Clausen, Polar lipids of oligodendrogliomas, J. Neurochem. 15: 263 (1968).

    CAS  Google Scholar 

  14. E. Svennilson, S. J. Dencker, and B. Swahn: Immunoelectrophoretic studies of CSF, Neurology 11: 989 (1961).

    PubMed  CAS  Google Scholar 

  15. W. P. Cutler, G. V. Watters, and C. F. Barlow, I125 labeled protein in experimental brain edema, Arch. Neurol. 11: 225 (1964).

    PubMed  CAS  Google Scholar 

  16. W. K. Hass, Soluble tissue antigens in human brain tumor and CSF, Arch. Neurol. 14: 443 (1966).

    PubMed  CAS  Google Scholar 

  17. L. N. Vauquelin, Analyse de la matière cérébrale de l’homme et de quelques animaux, Ann. Chim. 31: 37 (1812).

    Google Scholar 

  18. J. N. Cumings, The chemistry of cerebral tumors and of cerebral cyst fluids, Brain 66: 316 (1943).

    CAS  Google Scholar 

  19. G. Brante, Studies on lipids in the nervous system, Acta Physiol. Scand. 18 Suppl. 63 (1949).

    Google Scholar 

  20. M. M. Cohen, Quantitation of phosphorus compounds in the normal and pathologic human brain, J. Neuropath. Exper. Neurol. 14: 70 (1955).

    CAS  Google Scholar 

  21. N. Nayyar, A study of phosphate, deoxyribonucleic acid and phospholipid fractions in neural tumors, Neurology, 13: 287 (1963).

    PubMed  CAS  Google Scholar 

  22. H. O. Christensen Lou, J. Clausen, and F. Biering, Phospholipids and glycolipids of tumours in the central nervous system, J. Neurochem. 12: 619 (1965).

    Google Scholar 

  23. E. J. Ambrose, Surface characteristics of neoplastic cells. Henry Ford International Symposium: Biological Interactions in Normal and Neoplastic Growth (J. M. Brennan and W. L. Simpson eds.) Churchill, London (1962).

    Google Scholar 

  24. B. Selverstone and M. J. Moulton, The phosphorus metabolism of gliomas, A study with radioactive isotopes, Brain 80: 362 (1957).

    PubMed  CAS  Google Scholar 

  25. C. W. M. Adams and A. N. Davison, The occurence of esterified cholesterol in the developing nervous system. J. Neurochem. 4: 282 (1959).

    PubMed  CAS  Google Scholar 

  26. A. C. Johnson, A. R. McNabb, and R. J. Rossiter, Concentration of lipids in brain of infants and adults, Biochem. J. 44: 494 (1949).

    CAS  Google Scholar 

  27. K. Gopal, E. Grossi, P. Paoletti, and M. Usardi, Lipid composition of human intracranial tumors. A biochemical study, Acta Neurochirurgica 11: 333 (1963–64).

    PubMed  CAS  Google Scholar 

  28. R. Fumagalli, E. Grossi, P. Paoletti, and R. Paoletti, Studies on lipids in brain tumors, J. Neurochem. 11: 561 (1964).

    PubMed  CAS  Google Scholar 

  29. P. Paoletti, A. Visca, and R. Villani, Compositione in acidi grassi del tessuto cerebrale e di alcuni tumori endocranici umani; analisi con cromatografia gas-liquida, Minerva Med. 52: 590 (1961).

    PubMed  CAS  Google Scholar 

  30. A. A. Stein, E. Opalka, and F. Peck, Fatty acid analysis by gas chromatography, Arch. Neurol. 8: 50 (1963).

    PubMed  CAS  Google Scholar 

  31. H. B. White, Jr. and R. R. Smith, Cholesterol esters of the glioblastoma, J. Neurochem. 15: 293 (1968).

    PubMed  CAS  Google Scholar 

  32. R. Fumagalli, R. Paoletti, A. Allegranza, and P. Paoletti, Proc. Vth. Int. Congress Neuropath. p. 455, Excerpta Medica Found., Amsterdam (1965).

    Google Scholar 

  33. F. A. Vadenheuvel, R. Fumagalli, R. Paoletti, and P. Paoletti, A possible biochemical procedure for the diagnosis of human brain tumours, Life Sci. 6: 439 (1967).

    Google Scholar 

  34. C. E. Cain, E. O. Bell, Jr., H. B. White, Jr., L. L. Sulya, and R. R. Smith, Hydrocarbons from human meninges and meningiomas, BBA, 144: 493 (1967).

    PubMed  CAS  Google Scholar 

  35. J. N. Cumings, The examination of the CSF and cerebral cyst fluid by paper strip electrophoresis, J. Neurol. Neurosurg. Psychiatry 16: 152 (1953).

    PubMed  CAS  Google Scholar 

  36. J. N. Cumings, Water soluble proteins and enzymes in normal and in oedematous brain tissue. Proc. IV. International Congress of Neuropathology (H. Jacob, ed.) Vol. I, p. 157, G. Thieme Verlag, Stuttgart (1962).

    Google Scholar 

  37. W. Gerhardt, J. Clause, E. Christensen, and J. Riishede, Changes of LHD-isoenzymes, esterases, acid phosphatases and proteins in malignant and benign brain tumors, Acta Neurol. Scand. 39: 85 (1963).

    PubMed  CAS  Google Scholar 

  38. M. Wollemann, L. J. Rubinstein, G. I. Sutton, J. C. Smith, and F. F. Foldes, The aromatic esterase, Cholinesterase, acid phosphatase and lactate dehydrogenase activity of human brain tumors, in Variation in Chemical Composition of the Nervous System as Determined by Developmental and Genetic Factors (G. B. Ansell, ed.) p. 114, Pergamon Press, Oxford (1965).

    Google Scholar 

  39. M. Wollemann, A. Nagy, F. Katona, and E. Paraicz, Enzyme patterns and protein profiles of infant and adult brain tumors, Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and C. Galli, eds.) p. 420, Tamburini Editore, Milan (1969).

    Google Scholar 

  40. M. Wollemann, Metabolisme des Médiateurs Chimiques du Système Nerveux, pp. 110–114, Masson et Cie, Paris; Akadémiai Kiadó, Budapest (1970).

    Google Scholar 

  41. G. Monseau and J. N. Cumings, Polyacrylamide disc electrophoresis of the proteins of CSF and brain, J. Neurol. Neurosurg. Psychiatry 28: 56 (1965).

    Google Scholar 

  42. J. N. Cumings, The chemistry of cerebral cysts, Brain 73: 244 (1950).

    PubMed  CAS  Google Scholar 

  43. B. S. McEwen and H. Hydén, Studies of protein metabolism in relation to brain cell RNA and behaviour, in Molecular Basis of Some Aspects of Mental Activity, Proc. NATO Advanced Study Institute (O. Wallaas, ed.) Vol. 1, p. 131, Academic Press, New York.

    Google Scholar 

  44. B. S. McEwen and H. Hydén, A study of specific brain proteins on the semimicroscale, J. Neurochem. 13: 823 (1966).

    PubMed  CAS  Google Scholar 

  45. S. Bogoch, Brain protein 10B: structural studies and state in neural excitation, Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and C. Galli eds.) p. 97, Tamburini Editore, Milan (1969).

    Google Scholar 

  46. A. Grasso, T. Cicero, and B. W. Moore, Purification and characterization of an acidic protein from mammalian brain, Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and C. Galli, eds.) p. 201, Tamburini Editore, Milan (1969).

    Google Scholar 

  47. J. Vos and H. J. van der Helm, Electrophoresis of brain proteins in Polyacrylamide gel, J. Neurochem. 11: 209 (1964).

    PubMed  CAS  Google Scholar 

  48. B. W. Moore, A soluble protein characteristic of the nervous system, B. B. Res. Com. 19: 739 (1965).

    CAS  Google Scholar 

  49. M. Wender and Z. Waligora, Der Gehalt an Aminosäuren der Eiweisskörper in Hirngeschwülsten, in IV. Internationaler Kongress für Neuropathologie (H. Jacob, ed.) Vol. I, p. 131, Thieme Verlag, Stuttgart (1962).

    Google Scholar 

  50. A. Lowenthal, Elektrophoretische und chromatographische Untersuchung des Liquor cerebrospinalis, in Symposium über den Liquor cerebrospinalis (F. Seitelberger, ed.) p. 121, Springer Verlag, Wien (1966).

    Google Scholar 

  51. B. Ursing, S. J. Dencker, and B. Swahn, Protein pattern of CSF in meningitis and meningoencephalitis, Acta Med. Scand. 171: 715 (1962).

    PubMed  CAS  Google Scholar 

  52. H. J. Bauer, Immunologic der Cerebrospinalflüssigkeit, Symposium über dem Liquor cerebrospinalis (F. Seitelberger, ed.) p. 166, Springer Verlag, Wien (1966).

    Google Scholar 

  53. J. Clausen, The β-lipoprotein of serum and cerebrospinal fluid, Protides of the biological fluids, in Proc. of the Thirteenth Colloquium of Bruges (H. Peters, ed.) p. 85, Elsevier Publ. Co., Amsterdam (1966).

    Google Scholar 

  54. S. J. Dencker, R. Brönnestam, and B. Swahn, Demonstration of large blood proteins in CSF, Neurology 11: 441 (1961).

    PubMed  CAS  Google Scholar 

  55. B. Swahn, R. Brönnestam, and S. J. Dencker, On the origin of the lipoproteins in the CSF, Neurology 11: 431 (1961).

    Google Scholar 

  56. G. Schmidt and S. J. Tannhauser, A method for the determination of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues, J. Biol. Chem. 161: 83 (1945).

    PubMed  CAS  Google Scholar 

  57. J. P. Couerbe, Du cerveau, considéré sous 1e point de vue chimique et physiologique, Ann. Chim. Phys. 56: 160 (1834).

    Google Scholar 

  58. I. H. Heller and K. A. C. Elliott, Desoxyribonucleic acid content and cell density in brain and human brain tumors, Canad. J. Biochem. Physiol. 32: 584 (1954).

    PubMed  CAS  Google Scholar 

  59. J. E. Logan, W. A. Mannell, and R. J. Rossiter, Estimation of nucleic acids in tissue from nervous system, Biochem. J. 51: 470 (1952).

    PubMed  CAS  Google Scholar 

  60. L. W. Lapham, Subdivision of glioblastoma multiforme on a cytologic and cytochemical basis, J. Neuropath. Exp. Neurol. 18: 244 (1959).

    PubMed  CAS  Google Scholar 

  61. A. A. Stein and G. Eisinger, Observations on primary brain tumors with fluorescent microscopy, J. Neuropath. Exp. Neurol. 22: 170 (1963).

    PubMed  CAS  Google Scholar 

  62. G. L. Viale, H. Kroh, G. Grosso, and E. Viale, Transfer and ribosomal RNAs in brain tumors, in Second International Meeting of the International Society for Neuro chemistry, Round table discussion on neurochemistry of brain tumors. (P. Paoletti, ed.) p. 6, Unione tipografica Milano (1969).

    Google Scholar 

  63. W. M. Kirsch, J. W. Leitner, D. Schulz, and J. W. Buskirk, Energy metabolism of malignant tumors: chemotherapeutic implantations in Second International Meeting of the International Society for Neurochemistry (R. Paoletti, R. Fumagalli, and C. Galli, eds.), p. 242, Tamburini Editore, Milano (1969).

    Google Scholar 

  64. H. Druckrey, S. Ivankovic, and R. Preussmann, Selektive Erzeugung maligner Tumoren im Gehirn und Rückenmark von Ratten durch N-methyl-N-nitrosoharnstoff, Z. Krebsforsch. 66: 389 (1965).

    PubMed  CAS  Google Scholar 

  65. N. I. Grassenchenkov and B. M. Hekht, Copper content of brain tissues in health and in central nervous diseases, Exptl. Neurology 2: 573 (1960).

    Google Scholar 

  66. H. M. Canelas, F. B. De Jorge, W. C. Pereira, and J. Salum, Biochemistry of cerebral tumors: sodium, potassium, calcium, phosphorus, magnesium, copper and sulphur content of astrocytomata, medulloblastomata and glioblastomata multiforme.

    Google Scholar 

  67. J. V. Victor and A. Wolf, Metabolism of brain tumors, Proc. Assn. Res. Nerv. Ment. Dis. 16: 44 (1937).

    Google Scholar 

  68. I. H. Heller and K. A. C. Elliott, The metabolism of normal brain and human gliomas in relation to cell type and density, Canad. J. Biochem. Physiol. 33: 395 (1955).

    PubMed  CAS  Google Scholar 

  69. H. Mcllwain, Biochemistry and the Central Nervous System, J. A. Churchill Ltd., London (1959), p. 55.

    Google Scholar 

  70. H. E. Himwich, Brain Metabolism and Cerebral Disorders, Williams and Wilkins Co., Baltimore (1951) p. 185.

    Google Scholar 

  71. G. M. Lehrer, The quantitative histochemistry of human glial tumors, Proc. IV. International Congress of Neuropathology (H. Jacob, ed.) Vol. I, p. 66, G. Thieme, Verlag, Stuttgart (1962).

    Google Scholar 

  72. N. Allen, Cytochrome oxidase in human brain tumors, J. Neurochem, 2: 37 (1957).

    PubMed  CAS  Google Scholar 

  73. A. Pope, H. H. Hess, and N. Allen, Quantitative histochemistry of proteolytic enzymes in human cerebral cortex and brain tumors, in Ultrastructure and Cellular Chemistry of Neural Tissue (H. Waelsch, ed.) Progr. in Neurobiol. Vol. 2, p. 216, Hoeber, New York (1957).

    Google Scholar 

  74. G. B. Udvarhelyi, J. S. O’Connor, A. E. Walker, E. R. Laws Jr., and S. Kranin, A histo-chemical study of tumors of the central nervous system, in Proc. IV International Congress of Neuropathology (H. Jacob, ed.) Vol. I, p. 95, G. Thieme Verlag, Stuttgart (1962).

    Google Scholar 

  75. G. L. Viale and L. G. Andreussi, Histochemical study of the oxidative activity in tumors of the nervous system, Acta Neuropath. 4: 538 (1965).

    CAS  Google Scholar 

  76. J. S. O’Connor and E. R. Laws, Histochemical survey of brain tumor enzymes, Arch. Neurol. 9: 91 (1963).

    Google Scholar 

  77. J. L. Chason, J. W. Landers, J. E. Gonzales, and G. Brueckner, Respiratory enzyme activity of human gliomas: a slide histochemical study, J. Neuropath. Exptl. Neurol. 22: 471 (1963).

    CAS  Google Scholar 

  78. L. Perria, G. Viale, F. Ibba, L. Andreussi, and E. Viale, Istocitochimica dei tumori endocranci, Neuropsich, Riv. Trimestr. 20: 3 (1964).

    Google Scholar 

  79. G. Osske, R. Warzok, and W. Jänisch, Enzymhistochemie experimenteller Tumoren des Zentralnervensystems, Naturwissensch. 55: 495 (1968).

    CAS  Google Scholar 

  80. P. Schuberth and G. Kreutzberg, Enzymhistochemie menschlicher Hirntumoren und ihrer Gewebekultur, II. Oxydoreduktasen in Ependymomen mit quantitativen Befunden, Histochemie 9: 367 (1967).

    Google Scholar 

  81. G. W. Kreutzberg, M. Minauf, and F. Gullotta, Enzyme histochemistry of human brain tumors and their tissue cultures with special reference to the oxidoreductases in the glioblastoma multiforme, Histochemie 6: 8 (1966).

    PubMed  CAS  Google Scholar 

  82. B. Smith, Dehydrogenase activity in reactive and neoplastic astrocytes, Brain 86: 89 (1963).

    PubMed  CAS  Google Scholar 

  83. L. J. Rubinstein, I. Klatzo, and J. M. Miquel, Histochemical observations on oxidative enzyme activity of glial cells in a local brain injury. J. Neuropath. Exptl. Neurol. 21: 116 (1962).

    CAS  Google Scholar 

  84. L. J. Rubinstein and B. Smith, TPN diaphorase and TPN-dependent dehydrogenase activity of reactive macrophages in tissue necrosis, Nature 193: 895 (1962).

    PubMed  CAS  Google Scholar 

  85. R. L. Friede, Histochemischer, Nachweis von Succinodehydrogenase in Biopsien von menschlichen Hirngewebe, Virchows Archiv. Path. Anat. 332: 216 (1969).

    Google Scholar 

  86. H. Nasu and G. L. Viale, Recherches d’histochimie enzymatique avec les sels de tetrazolium sur les gliomes in Proc. IV. International Congress of Neuropathology, Vol. I, p. 115, G. Thieme Verlag, Stuttgart (1962).

    Google Scholar 

  87. K. Ogawa and H. M. Zimmermann, The activity of succinic dehydrogenase in the experimental ependymoma of C3H mice, J. Histochem. Cytochem. 7: 342 (1959).

    PubMed  CAS  Google Scholar 

  88. L. J. Rubinstein, L. C. Scheinberg, and W. A. Levy, A slide histochemistry study on the intermediary metabolism of various experimental tumors after intracerebral implantation, J. Neuropathol. Exptl. Neurol. 24: 155 (1966).

    Google Scholar 

  89. J. N. Potanos, A. Wolf, and D. Cowen, Cytochemical localization of oxidative enzymes in human nerve cells and neuroglia, J. Neuropath. Exptl. Neurol. 18: 627 (1959).

    CAS  Google Scholar 

  90. M. J. Mossakowski, The activity of succinic dehydrogenase in glial tumors, J. Neuropath. Exptl. Neurol. 21: 137 (1962).

    CAS  Google Scholar 

  91. D. Schiffer and C. Vesco, Recherches histochimiques sur quelques activités enzymatiques dans le tissu nerveux humain normal et pathologique, in Proc. IV. International Congress of Neuropathology (H. Jacob, ed.) Vol. 1, p. 83, G. Thieme Verlag, Stuttgart (1962).

    Google Scholar 

  92. F. Hajos and S. Kerpel-Fronius, Ultracytochemical evidences for the functional heterogeneity of mitochondria in the nervous system, in Second International Meeting of the Society for Neurochemistry (R. Paoletti, R. Fumagalli, and C. Galli, eds.) p. 205, Tamburini Editore, Milano (1969).

    Google Scholar 

  93. R. G. McDonald-Gibson and M. B. Thorn, Reversible activation of succinate dehydrogenase, Biochem. J. 114: 775 (1969).

    PubMed  CAS  Google Scholar 

  94. H. D. Paxton, Quantitative histochemistry of brain tumors and analogous normal tissue, Neurol. 9: 367 (1959).

    CAS  Google Scholar 

  95. A. Lowenthal, M. van Sande, and D. Karcher, Heterogenity of lactic and malic dehydrogenase in serum, CSF, and brain extract in man and sheep, Ann. N. Y. Acad. Sci. 94: 988 (1961).

    PubMed  CAS  Google Scholar 

  96. L. G. Andreussi and A. Restelli-Fondelli, Cytoplasmic oxidation activity in cell division processes in the tumors of the nervous system and in their tissue cultures, Acta Neurochir. 15: 40 (1966).

    CAS  Google Scholar 

  97. G. L. Viale and F. Ibba, Histochemische Untersuchungen über die Phosphorylase in Hirngeschwülsten, Acta Neurochir. 12: 475 (1964).

    CAS  Google Scholar 

  98. M. Buckell and M. C. Robertson, Enzyme studies in cerebral tumors, lactate dehydrogenase, glucosephosphate isomerase, acid and alkaline phosphatase in plasma, ventricular cerebrospinal fluid and tumor cyst fluid from cases of glioma and cerebral secondary carcinoma, Brit. J. Cancer 19: 83 (1965).

    PubMed  CAS  Google Scholar 

  99. C. De Risio and J. N. Cumings, Some enzyme studies in cerebral tumors and in the cerebrospinal fluid, Rivista di Neurobiol. 6: 535 (1960).

    CAS  Google Scholar 

  100. O. Warburg and W. Christian, Gärungsfermente im Blutserum von Tumorratten, Biochem. Z. 314: 299 (1942).

    Google Scholar 

  101. J. A. Sibley and A. D. Lehninger, Aldolase in serum and tissues of tumor-bearing animals, J. Natl. Cancer Inst. 9: 303 (1949).

    PubMed  CAS  Google Scholar 

  102. T. Wieland and G. Pfleiderer, Nachweis der Heterogenität von Milchsäuredehydrogenasen verschiedenen Ursprungs durch Trägerelektrophorese, Biochem. Z. 329: 112 (1957).

    PubMed  CAS  Google Scholar 

  103. T. Matsushima, S. Kawabe, M. Shibuya, and T. Sugimura, Aldolase isoenzyme in rat tumor cells, Biochem. Biophys. Res. Commun. 30: 565 (1968).

    PubMed  CAS  Google Scholar 

  104. T. Sugimura, S. Sato, S. Kawabe, N. Suzuki, T. C. Chien, and K. Takakura, Aldolase C in brain tumors, Nature 222: 1070 (1969).

    PubMed  CAS  Google Scholar 

  105. F. Kubowitz and P. Ott, Isolierung und Kristallisation eines Gärungsfermentes aus Tumoren, Biochem. 314: 94 (1943).

    CAS  Google Scholar 

  106. A. L. Schade, Enzymic studies on ascitic tumors and their host’s blood plasma, BBA 12: 163 (1953).

    PubMed  CAS  Google Scholar 

  107. B. R. Hill and C. Levi, Elevation of a serum component in neoplastic disease, Cancer Res. 14: 513 (1954).

    PubMed  CAS  Google Scholar 

  108. F. Wroblewski and J. S. LaDue, Serum lactic dehydrogenase activity in blood, Proc. Soc. Exptl. Biol Med. 90: 210 (1955).

    CAS  Google Scholar 

  109. F. Wróblewski and B. Decker, Activity of lactic dehydrogenase in spinal fluid, Amer. J. Clin. Path. 28: 269 (1957).

    Google Scholar 

  110. F. H. Bruns, W. Jacob, and F. Weverinek, Phosphohexoseisomerase, Phosphoribo-isomerase und Laktatdehydrogenase im Liquor cerebrospinalis, Clin. Chim. Acta 1: 63 (1956).

    PubMed  CAS  Google Scholar 

  111. G. A. Fleischer, K. G. Wakim, and N. P. Goldstein, GOT and LDH in serum and CSF of patients with neurologic disorders, Proc. Staff Med. Mayo Clin. 32: 188 (1957).

    Google Scholar 

  112. K. M. Hsieh, S. S. Mao, and K. Sasananonth, Serum lactic dehydrogenase activity after excision of transplanted tumors, Cancer Res., 19: 700 (1959).

    PubMed  CAS  Google Scholar 

  113. W. Kirsch, Anaerobic energetic events in the glioblastoma: a regional cystochemical study, Second International Meeting of the International Society for Neurochemistry. Round table discussion on Neurochemistry of Brain Tumors (P. Paoletti, ed.) p. 8, Unione tipografica, Milano (1969).

    Google Scholar 

  114. F. Corridori, T. Cremona, and G. Tagliabue, Glutamic-oxalacetic transaminase and lactic dehydrogenase activities in brain tumour homogenates, J. Neurochem. 6: 142 (1960).

    PubMed  CAS  Google Scholar 

  115. H. B. Szliwowski and J. N. Cumings, The diagnostic value of the chemical examination of cerebral cyst fluids, Brain 84: 204 (1961).

    PubMed  CAS  Google Scholar 

  116. L. J. Rubinstein and C. H. Sutton, Histochernical observation on oxidative enzyme activity in tumors of the nervous system, J. Neuropath. Exptl. Neurol. 23: 196 (1964).

    Google Scholar 

  117. F. Matakas, Einfluss der Kultivation in vitro auf das Enzymmuster intrakranieller Tumoren, Dtsch. Z. Nervenheilk. 196: 287 (1969).

    CAS  Google Scholar 

  118. F. Wróblewski and K. F. Gregory, Lactic dehydrogenase isoenzymes and their distribution in normal tissues and plasma and in disease states, Ann. N. Y. Acad. Sci. 94: 912 (1961).

    PubMed  Google Scholar 

  119. K. Sano, H. Chigasaki, and K. Takakura, Diagnostic value of LDH isoenzyme studies in intracranial tumour, Proc. Third International Congress of Neurological Surgery, International Congress Series No. 110. Excerpta Medica Found., Amsterdam (1966) p. 575.

    Google Scholar 

  120. A. L. Sherwin, F. E. Leblanc, and W. P. McCann, Altered LDH Isoenzymes in Brain Tumors, Arch. Neurol. 18: 311 (1968).

    PubMed  CAS  Google Scholar 

  121. J. B. Green, H. A. Oldewurtel, D. S. O’Doherty, and F. M. Foster, CSF transaminase and lactic dehydrogenase activities in neurologic diseases, Arch. Neurol. Psych. 80: 148 (1958).

    CAS  Google Scholar 

  122. D. M. Dawson, T. L. Goodfriend, and N. O. Kaplan, Lactic dehydrogenase: functions of the two types, Science, 143: 929 (1964).

    PubMed  CAS  Google Scholar 

  123. A. Lowenthal, D. Karcher, and M. van Sande, Electrophoretic patterns of lactate dehydrogenase isoenzymes in nervous tissue, J. Neurochem. 11: 247 (1964).

    PubMed  CAS  Google Scholar 

  124. M. Wollemann, F. Katona, and E. Paraicz, Proteinfraktionen, LDH und Esterase Isoenzyme in subduralen Ergüssen im Säuglingsalter, in Symposium of Subdural Effusions of Infancy, Leipzig (1969).

    Google Scholar 

  125. F. Güttler and J. Clausen, Factors affecting the lactate dehydrogenase isoenzyme pattern of cultured kidney-cortex cells, Biochem. J. 114: 839 (1969).

    PubMed  Google Scholar 

  126. M. Wollemann and L. Gazsó, Acta Neuropathologica in press (1971).

    Google Scholar 

  127. A. Gluszcz and L. Giernat, The activity of oxidative enzymes in short-term expiant cultures of gliomas in vitro. Coenzyme I-bound dehydrogenases and succinate dehydrogenase, Folia Histochem. Cytochem. 7: 15 (1969).

    CAS  Google Scholar 

  128. M. J. Blunt and C. P. Wendell-Smith, Glial alpha-glycerophosphate dehydrogenase and central myelination, Nature 216: 605 (1967).

    PubMed  CAS  Google Scholar 

  129. M. Allen, Distribution patterns of three enzymes in tumors of the nervous system, Proc. IV. International Congress of Neuropathology (H. Jacob, ed.) p. 104, G. Thieme, Verlag. Stuttgart (1962).

    Google Scholar 

  130. N. Marks and M. Wollemann, unpublished results (1964).

    Google Scholar 

  131. A. Gluszcz, A histological study of some hydrolytic enzymes in tumors of the nervous system, Acta Neuropath. 3: 184 (1963).

    PubMed  CAS  Google Scholar 

  132. K. A. Youngstrom, B. R. Woodhall, and R. W. Graves, Acetylcholinesterase content of brain tumors, Proc. Soc. Exp. Biol. Med. 48: 555 (1941).

    CAS  Google Scholar 

  133. J. B. Cavanagh, R. H. S. Thompson, and G. R. Webster, The localization of pseudo-cholinesterase activity in nervous tissue, Quart. J. Exp. Physiol. 39: 185 (1954).

    PubMed  CAS  Google Scholar 

  134. E. Biilbring, F. Philpot, and F. D. Bosanquet, Amine oxidase, pressor amines and Cholinesterase in brain tumors, Lancet 1: 865 (1953).

    Google Scholar 

  135. M. Wollemann and L. Zoltán, Cholinesterase activity of cerebral tumors and tumorous cysts, Arch. Neurol. 6: 161 (1962).

    PubMed  CAS  Google Scholar 

  136. F. F. Foldes, E. K. Zsigmond, V. M. Foldes, and E. G. Erdös, The distribution of acetylcholinesterase and butyrylcholinesterase in the human brain, J. Neurochem. 9: 559 (1962).

    PubMed  CAS  Google Scholar 

  137. G. W. Kreutzberg and F. Gullotta, Enzymhistochemischer Beitrag zur Histogenèse des Medulloblastomas, Arch. f. Psych, u. Zschr. f.d. ges. Neurol. 209: 378 (1967).

    Google Scholar 

  138. M. Goldstein, B. Anagoste, M. N. Goldstein, Tyramine-H3: Deaminated metabolites in neuroblastoma tumors and in continuous cell line of a neuroblastoma, Science 160: 767 (1968).

    PubMed  CAS  Google Scholar 

  139. D. Joyce, 5-Hydroxytryptamine content in glioma, Experientia 19: 187 (1963).

    CAS  Google Scholar 

  140. A. Sjoerdsma, Catecholamine metabolism in patients with pheochromocytoma, Pharmacol., Rev. 11: 374 (1959).

    CAS  Google Scholar 

  141. D. G. Grahame-Smith, Tryptophane hydroxylation in carcinoid tumors, BBA 86: 176 (1964).

    PubMed  CAS  Google Scholar 

  142. M. Wollemann and T. Dévényi, The GABA content and glutamate decarboxylase activity of brain tumors, J. Neurochem. 10: 83 (1963).

    CAS  Google Scholar 

  143. H. G. Thompson, E. J. Hirschberg, M. Osnos, and A. Gelhorn, Evaluation of phospho-hexose isomerase activity in CSF in neoplastic disease of the central nervous system, Neurology 9: 545 (1959).

    CAS  Google Scholar 

  144. L. J. Rubinstein and C. H. Sutton, Histochemical observation on oxidative enzyme activity in tumors of the nervous system, J. Neuropath. Exper. Neurol. 23: 196 (1964).

    Google Scholar 

  145. A. Waksman and C. Faenza, Identification de 1a transaminase glutamique-gamma-aminobutyrique dans le cerveau humain, Clin. Chim. Acta 5: 450 (1960).

    CAS  Google Scholar 

  146. M. Spiegel-Adolf and H. T. Wycis, Enzymatic action of fluids from cystic brain tumors, I. J. Neuropath. Exper. Neurol. 12: 601 (1954).

    Google Scholar 

  147. M. Spiegel-Adolf and H. T. Wycis, Enzymatic action of fluids from cystic brain tumors. II. J. Neuropath. Exper. Neurol. 16: 404 (1957).

    CAS  Google Scholar 

  148. H. Landow, E. A. Kabat, and W. Newman, Distribution of alkaline phosphatase in normal and neoplastic tissue of the nervous system, Arch. Neurol. Psych. 48: 518 (1942).

    CAS  Google Scholar 

  149. H. W. Biittger, G. Scarlato, W. Müller, and D. Kemali, Über das Vorkommen und die Verteilung der alkalischen und sauren Phosphatase in Meningiomen, Deutsche Zschr. f. Nervenheilkunde 176: 61 (1957).

    Google Scholar 

  150. J. Feigen and A. Wolf, The alkaline phosphatase activity of brain tumors, J. Neuropath. Exper. Neurol. 17: 522 (1958).

    Google Scholar 

  151. W. M. Kirsch, Histochemical and quantitative analysis of alkaline phosphatase during the course of experimental intracranial neoplasma, Neurol. 13: 23 (1963).

    Google Scholar 

  152. G. Gomori, Microtechnical demonstration of phosphatase in tissue sections. Proc. Soc. Exper. Biol. Med. 42: 23 (1939).

    CAS  Google Scholar 

  153. W. Müller and H. Nasu, Fermenthistochemische Untersuchungen an Neurinomen, Zschr. f. Pathol. 70: 417 (1960).

    Google Scholar 

  154. A. Wolf, E. A. Kabat, and W. Newman, A study of the distribution of acid phosphatases with special reference to the nervous system, Amer. J. Path. 19: 423 (1943).

    PubMed  CAS  Google Scholar 

  155. P. J. Anderson and S. K. Song, Acid phosphatase in the nervous system, J. Neuropath. Exp. Neurol. 21: 274 (1962).

    Google Scholar 

  156. K. A. Osterberg and L. W. Wattenberg, Oxidative histochemistry of reactive astrocytes, Arch. Neurol. 7: 211 (1962).

    PubMed  CAS  Google Scholar 

  157. N. Allen, β-Glucuronidase activities in tumors of the nervous system, Neurol. 11: 578 (1961).

    CAS  Google Scholar 

  158. G. M. Lehrer, Quantitative histochemistry of human glial tumors, in W. S. Fields and P. C. Skarkey, The Biology and Treatment of Intracranial Tumors (W. S. Fields and P. C. Skarkey, eds.) Springfield, Ill. Charles C Thomas (1962).

    Google Scholar 

  159. F. Ikuta and H. M. Zimmermann, Intramuscular precancerous lesions from hydrocarbons, Arch. Pathol. 78: 377 (1964).

    PubMed  CAS  Google Scholar 

  160. D. S. Rüssel, L. J. Rubinstein, and C. E. Lumsden, Pathology of Tumours of the Nervous System, E. Arnold Publ. Ltd., London (1963), p. 281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Wollemann, M. (1972). Biochemistry of Brain Tumors. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7172-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7172-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7174-2

  • Online ISBN: 978-1-4615-7172-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics