Skip to main content

The Biochemistry of Affective Disorders

  • Chapter
Handbook of Neurochemistry

Abstract

There are those who deny the relevance of somatic factors in the etiology of the functional psychoses and view them primarily as a psychological reaction rather than a disease. In their view, insanity does not belong in the province of the physician at all but is the domain of the psychologist, the educator, and the social worker. To others insanity is as much a disease as cancer or arthritis. This dichotomy of views has ancient roots and to this day the question is disputed whether the modern equivalent of bell, book, and candle or that of bleeding cup and ducking chair is the more appropriate therapy for insanity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.B. Cannon, Bodily Changes in Pain, Hunger, Fear and Rage, 2nd ed. Appleton-Century-Crofts, New York (1929).

    Google Scholar 

  2. W. R. Hess, Diencephalon. Autonomie and Extrapyramidal Functions, Grune and Stratton, New York (1954).

    Google Scholar 

  3. B. B. Brodie and P. A. Shore, A concept for a role of serotonin and norepinephrine as chemical mediators in the brain, Ann. N. Y. Acad. Sci. 66: 631–642 (1957).

    Article  PubMed  CAS  Google Scholar 

  4. E. Rüther, M. Ackenheil, and N. Matussek, Beitrag zum Noradrenalin-und Serotonin-Stoffwechsel im Rattenhirn nach Stress-Zustanden, Arzneimittelforsch. 16: 261 (1966).

    PubMed  Google Scholar 

  5. J. D. Barchas and D. X. Freedman, Brain amines: response to physiological stress, Biochem. Pharmacol. 12: 1232 (1963).

    Article  PubMed  CAS  Google Scholar 

  6. D. X. Freedman, Psychotomimetic drugs and brain biogenic amines, Amer. J. Psychiat. 119: 843–850 (1963).

    PubMed  CAS  Google Scholar 

  7. R. Levi and E. W. Maynert, Effects of stress on brain norepinephrine, Fed. Proc. 21: 336 (1962).

    Google Scholar 

  8. E. W. Maynert and R. Levi, Stress-induced release of brain norepinephrine and its inhibition by drugs, J. Pharmacol. Exp. Therap. 143: 90 (1964).

    CAS  Google Scholar 

  9. J. M. Ordy, T. Samorajski, and D. Schroeder, Concurrent changes in hypothalamic and cardiac catecholamine levels after anesthetics, tranquilizers and stress in a subhuman primate, J. Pharmacol. Exp. Therap. 152: 445–457 (1966).

    CAS  Google Scholar 

  10. M. Stupfel and J. Roffi, Action de l’anoxie et de différents taux de gaz carbonique sur le contenu en noradrénaline et en adrénaline du cerveau de Rat, Compt. Rend. Soc. Biol. 155: 237 (1961).

    CAS  Google Scholar 

  11. H. Hift, M. L. Halperin, S. I. Hegedus, and W. O. Thomas, Tissue catecholamine levels in prolonged oligemic hypotension, Proc. Soc. Exper. Biol. Med. 119: 883–887 (1965).

    CAS  Google Scholar 

  12. B. Coleman and V. V. Glaviano, Tissue levels of norepinephrine and epinephrine in hemorrhagic shock, Science. 139: 54 (1962).

    Article  Google Scholar 

  13. J. Häggendal, Effect of hyperbaric oxygen on monoamine metabolism in central and peripheral tissues of the rat, Europ. J. Pharmacol. 2: 3233 (1968).

    Article  Google Scholar 

  14. G. A. Rogeness and H. Weil-Malherbe, The effect of normal and schizophrenic serum on the catecholamine levels in rabbit hypothalamus, Life Sci. 7:Part 1, 511–516 (1968).

    Article  PubMed  CAS  Google Scholar 

  15. C. Breitner, C. Picchioni, and L. Chin, Neurohormone levels in brain after CNS stimulation including electrotherapy, J. Neuropsychiat. 5: 153 (1964).

    PubMed  CAS  Google Scholar 

  16. J. R. McLean and M. McCartney, Effect of D-amphetamine on rat brain noradrenaline and serotonin, Proc. Soc. Exp. Biol. Med. 107: 77 (1961).

    PubMed  CAS  Google Scholar 

  17. B. L. Welch and A. S. Welch, Effect of grouping on the level of brain norepinephrine in white Swiss mice, Life Sci. 4: 1011 (1965).

    Article  PubMed  CAS  Google Scholar 

  18. E. L. Bliss and J. Zwanziger, Brain amines and emotional stress, J. Psychiat. Res. 4: 189–198 (1966).

    Article  PubMed  CAS  Google Scholar 

  19. D. J. Reis and L. M. Gunne, Brain catecholamines: relation to the defense reaction evoked by amygdaloid stimulation in the cat, Science. 149: 450 (1965).

    Article  PubMed  CAS  Google Scholar 

  20. K. E. Moore, The role of endogenous norepinephrine in the toxicity of D-amphetamine in aggregated mice, J. Pharmacol. Exp. Therap. 144: 45 (1964).

    CAS  Google Scholar 

  21. S. Buckingham, S. C. Sommers, and W. F. McNary, Sympathetic activation and serotonin release as factors in pulmonary edema after hyperbaric oxygen, Fed. Proc. 25: 566 (1966).

    Google Scholar 

  22. B. L. Welch and A. S. Welch, Differential activation by restraint stress of a mechanism to conserve brain catecholamines and serotonin in mice differing in excitability, Nature 218: 575 (1968).

    Article  PubMed  CAS  Google Scholar 

  23. A. J. Ingenito, Norepinephrine levels in various areas of rat brain during cold acclimation, Proc. Soc. Exp. Biol. Med. 127: 74 (1968).

    PubMed  CAS  Google Scholar 

  24. H. C. Nielson and R. M. Fleming, Effects of electroconvulsive shock and prior stress on brain amine levels, Exp. Neurol. 20: 21–30 (1968).

    Article  PubMed  CAS  Google Scholar 

  25. T. Iwamoto and T. Sato, Effects of chlorpromazine, azacyclonol and chlordiazepoxide on brain catecholamine contents of stressed rats, Jap. J. Pharmacol. 13: 66 (1963).

    Article  PubMed  CAS  Google Scholar 

  26. R. Gordon, S. Spector, A. Sjoerdsma, and S. Udenfriend, Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold, J. Pharmacol. Exp. Therap. 153: 440–447 (1966).

    CAS  Google Scholar 

  27. H. Corrodi, K. Fuxe, and T. Hökfelt, The effect of immobilization stress on the activity of central monoamine neurons, Life Sci. 7: 107–112 (1968).

    Article  PubMed  CAS  Google Scholar 

  28. H. Corrodi, K. Fuxe, and T. Hökfelt, The effect of ethanol on the activity of central catecholamine neurons in rat brain, J. Pharm. Pharmac. 18: 821 (1966).

    Article  CAS  Google Scholar 

  29. A. M. Thierry, F. Javoy, J. Glowinski, and S. S. Kety, Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the Rat. I. Modifications of norepinephrine turnover, J. Pharmacol. Exp. Therap. 163: 163 (1968).

    CAS  Google Scholar 

  30. B. L. Welch and A. S. Welch, Greater lowering of brain and adrenal catecholamines in group-housed than in individually housed mice administered DL-α-methyltyrosine, J. Pharm. Pharmac. 20: 244 (1968).

    Article  CAS  Google Scholar 

  31. H. Corrodi, K. Fuxe, and T. Hökfelt, The effects of barbiturates on the activity of the catecholamine neurones in the rat brain. J. Pharm. Pharmac. 18: 556 (1966).

    Article  CAS  Google Scholar 

  32. E. M. Gal, R. D. Heater, and S. A. Millard, Studies on the metabolism of 5-hydroxy-tryptamine (serotonin) VI. Hydroxylation and amines in cold-stressed reserpinized rats, Proc. Soc. Exp, Biol. Med. 128: 412–415 (1968).

    CAS  Google Scholar 

  33. P. M. Diaz, S. H. Ngai, and E. Costa, Effect of oxygen on brain serotonin metabolism in rats, Amer. J. Physiol. 214: 591 (1968).

    PubMed  CAS  Google Scholar 

  34. E. Giacalone, M. Tansella, L. Valzelli, and S. Garattini, Brain serotonin metabolism in isolated aggressive mice, Biochem. Pharmacol. 17: 1315–1327 (1968).

    Article  PubMed  CAS  Google Scholar 

  35. J. W. Maas, Neurochemical differences between two strains of mice, Nature 197: 255 (1963).

    Article  PubMed  CAS  Google Scholar 

  36. H. S. Sudak and J. W. Maas, Central nervous system serotonin and norepinephrine localization in emotional and non-emotional strains in mice, Nature 203: 1254 (1964).

    Article  PubMed  CAS  Google Scholar 

  37. H. S. Sudak and J. W. Maas, Behavioral-neurochemical correlation in reactive and nonreactive strains of rat, Science 146: 418 (1964).

    Article  PubMed  CAS  Google Scholar 

  38. A. Carlsson, M. Lindqvist, and T. Magnusson, 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists, Nature 180: 1200 (1957).

    Article  PubMed  CAS  Google Scholar 

  39. W. G. Dewhurst, Cerebral amines and behavior, Lancet, 11: 514–515 (1968).

    Article  Google Scholar 

  40. N. E. Anden, M. G. M. Jukes, and A. Lundberg, Spinal reflexes and monoamine liberation, Nature 202: 1222 (1964).

    Article  PubMed  CAS  Google Scholar 

  41. L. S. Seiden and D. D. Peterson, Reversal of the reserpine-induced suppression of the conditioned avoidance response by L-dopa: correlation of behavioral and biochemical differences in two strains of mice, J. Pharmacol. Exp. Therap. 159: 422–428 (1968).

    CAS  Google Scholar 

  42. J. Scheel-Kruger and A. Randrup, Stereotype hyperactive behavior produced by dopamine in the absence of noradrenaline, Life Sci. 6: 1389–1398 (1967).

    Article  PubMed  CAS  Google Scholar 

  43. A. Jori, M. C. Carrara, and S. Garattini, Importance of noradrenaline synthesis for the interaction between desipramine and reserpine, J. Pharm. Pharmac. 18: 619 (1966).

    Article  CAS  Google Scholar 

  44. L. S. Seiden and D.D. Peterson, Blockade of L-dopa reversal of reserpine-induced conditioned avoidance response suppression by disulfiram, J. Pharmacol. Exp. Therap. 163: 84 (1968).

    CAS  Google Scholar 

  45. G. M. Everett, Some electrophysiological and biochemical correlates of motor activity and aggressive behavior, Neuropsychopharmacology (E. Röthlin, ed.) Vol. 2, p. 479, Elsevier, Amsterdam (1961).

    Google Scholar 

  46. P. L. McGeer, E. G. McGeer, and J. A. Wada, Central aromatic amine levels and behavior. II. Serotonin and catecholamine levels in various cat brain areas following administration of psychoactive drugs or amine precursors, Arch. Neurol. 9: 81 (1963).

    Article  Google Scholar 

  47. J. A. Wada and E. G. McGeer, Central aromatic amines and behavior. III. Correlative analysis of conditioned approach behavior and brain levels of serotonin and catecholamines in monkeys, Arch. Neurol. 14: 129–142 (1966).

    Article  PubMed  CAS  Google Scholar 

  48. D. F. Bogdanski, H. Weissbach, and S. Udenfriend, Pharmacological studies with the serotonin precursor, 5-hydroxytryptophan, J. Pharmacol. Exp. Therap. 122: 182 (1958).

    CAS  Google Scholar 

  49. N. Matussek, Wirkung von 5-Hydroxytryptophan auf zentrale adrenerge Erregungen, Naturwiss. 52: 85 (1965).

    Article  CAS  Google Scholar 

  50. A. Shimizu, Y. Hishikawa, K. Matsumoto, and Z. Kaneko, Electroencephalographic studies on the action of monoamine oxidase inhibitor, Psychopharmacol. 6: 368–387 (1964).

    Article  CAS  Google Scholar 

  51. S. Spector, A. Sjoerdsma, and S. Udenfriend, Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, an inhibitor of tyrosine hydroxylase, J. Pharmacol. Exp. Therap. 147: 86 (1965).

    CAS  Google Scholar 

  52. K. E. Moore and R. H. Rech, Reversal of α-methyl-tyrosine-induced behavioral depression with dihydroxyphenylalanine and amphetamine, J. Pharm. Pharmac. 19: 405 (1967).

    Article  CAS  Google Scholar 

  53. K. E. Moore, Behavioral effects of a-methyl-tyrosine administered in the diets of mice pretreated with a monoamine oxidase inhibitor, J. Pharm. Pharmac. 20: 656 (1968).

    Article  CAS  Google Scholar 

  54. W. Lippmann and M. Wishnick, Effect of DL-p-chloro-N-methylamphetamine on the concentrations of monoamines in the cat and rat brain and rat heart, Life Sci. 4: 849 (1965).

    Article  PubMed  CAS  Google Scholar 

  55. D. A. Stevens, O. Resnick, and D. M. Krus, The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior: I. Facilitation of discrimination learning, Life Sci. 6: 2215–2220 (1967).

    Article  PubMed  CAS  Google Scholar 

  56. E. Fischer and B. Heller, Pharmacology of the mechanism of certain effects of reserpine in the rat, Nature 216: 1221–1222 (1967).

    Article  PubMed  CAS  Google Scholar 

  57. J. E. Fitzwater, R. P. White, and C. B. Nash, Selective blockade by mephentermine of reserpine-induced serotonin depletion, Experientia 24: 698 (1968).

    Article  PubMed  CAS  Google Scholar 

  58. B. K. Koe and A. Weissman, p-Chlorophenylalanine: a specific depletor of brain serotonin, J. Pharmacol. Exp. Therap. 154: 499–516 (1966).

    CAS  Google Scholar 

  59. J. Häggendal and M. Lindqvist, Disclosure of labile monoamine fractions in brain and their correlation to behavior, Acta Physiol. Scand. 60: 351 (1964).

    Article  Google Scholar 

  60. W. G. Dewhurst, in Studies in Psychiatry (M. Shepherd and D. L. Davies, eds.) pp. 289–317, Oxford Univ. Press, London (1968).

    Google Scholar 

  61. W. G. Dewhurst, New theory of cerebral amine function and its clinical application, Nature 218: 1130–1133 (1968).

    Article  PubMed  CAS  Google Scholar 

  62. L. Stein, Self-stimulation of the brain and the central stimulant action of amphetamine, Fed. Proc. 23: 836–850 (1964).

    PubMed  CAS  Google Scholar 

  63. U. Trendelenburg, A. Muskus, W. W. Fleming, and B. G. Alonso de la Sierra, Modification by reserpine of the action of sympathomimetic amines in spinal cats; a classification of sympathomimetic amines, J. Pharmacol. Exp. Therap. 138: 170 (1962).

    CAS  Google Scholar 

  64. A. Weissman, B. K. Koe, and S. S. Tenen, Antiamphetamine effects following inhibition of tyrosine hydroxylase, J. Pharmacol. Exp. Therap. 151: 339–352 (1966).

    CAS  Google Scholar 

  65. L. C. F. Hanson, Biochemical and behavioural effects of tyrosine hydroxylase inhibition, Psychopharmacol. 11: 8–17 (1967).

    Article  CAS  Google Scholar 

  66. I. J. Kopin, G. R. Breese, K. R. Krauss, and V. K. Weise, Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation, J. Pharmacol. Exp. Therap. 161: 271–278 (1968).

    CAS  Google Scholar 

  67. K. Fuxe, H. Grobecker, and J. Jonsson, The effect of β-phenylethylamine on central and peripheral monoamine-containing neurons, Europ. J. Pharmacol. 2: 202 (1967/68).

    Article  CAS  Google Scholar 

  68. E. Muscholl, Indirectly acting sympathomimetic amines, Pharmacol. Rev. 18: 551–559 (1966).

    PubMed  CAS  Google Scholar 

  69. A. Thithapandha and H. M. Maling, The nature of the central actions of caffeine and theophylline, Fed. Proc. 27: 273 (1968).

    Google Scholar 

  70. M. Jouvet, P. Bobillier, J. F. Pujol, and J. Renault, Effets des lésions du système du raphé sur le sommeil et la Sérotonine cérébrale, Compt. Rend. Soc. Biol. 160: 2343 (1967).

    Google Scholar 

  71. F. Delorme, J. L. Froment, and M. Jouvet, Suppression du sommeil par la p-chloro-méthamphétamine et la p-chlorophénylalanine, Compt. Rend. Soc. Biol. 160: 2347 (1967).

    Google Scholar 

  72. F. Delorme, Monoamines et sommeil. Etude polygraphique, neuropharmacologique et histochimique des états de sommeil chez le chat, Thèse Médicine, Lyon (1966).

    Google Scholar 

  73. N. Yamaguchi, T. J. Marczinski, and G. M. Ling, The effects of electrical and chemical stimulation of the preoptic region and some non-specific thalamic nuclei in unrestrained, waking animals, Electroencephalo. Clin. Neurophysiol. 15: 154 (1963).

    Google Scholar 

  74. I. X. Ledebur and R. Tissot, Modification de l’activité électrique cérébrale du lapin sous l’éffet de micro-injections de précurseurs des monoamines dans les structures somnogènes bulbaires et pontiques, Electroencephalo. Clin. Neurophysiol. 20: 370–381 (1966).

    Article  CAS  Google Scholar 

  75. M. Jouvet, in Sleep Mechanisms (K. Akert, C. Bally, and J. P. Schade, eds.) Vol. 18, pp. 20–62, Progress in Brain Research, Elsevier, Amsterdam (1965).

    Chapter  Google Scholar 

  76. D. Dusan-Peyrethon, J. Peyrethon, and M. Jouvet, Suppression élective du sommeil paradoxal chez le chat par α-methyl dopa, Compt. Rend. Soc. Biol. 162: 116 (1968).

    CAS  Google Scholar 

  77. C. Torda, Effect of changes of brain norepinephrine content on sleep cycle in rat, Brain Res. 10: 200 (1968).

    Article  PubMed  CAS  Google Scholar 

  78. J. Matsumoto and M. Jouvet, Effets de réserpine, DOPA et 5-HTP sur les deux états de sommeil, Compt. Rend. Soc. Biol. 158: 2137–2140 (1964).

    CAS  Google Scholar 

  79. J. F. Pujol, J. Mouret, M. Jouvet, and J. Glowinski, Increased turnover of cerebral norepinephrine during rebound of paradoxical sleep in the rat, Science 159: 112–114 (1968).

    Article  Google Scholar 

  80. E. Ruther, A. Halaris, and N. Matassek, Norepinephrine and 5-hydroxytryptamine in the CNS of rats under continuous illumination and total darkness, Med. Pharmacol. Exp. 17: 139–143 (1967).

    CAS  Google Scholar 

  81. J. Manshardt and R. J. Wurtman, Daily rhythm in the noradrenaline content of rat hypothalamus, Nature 217: 574 (1968).

    Article  PubMed  CAS  Google Scholar 

  82. A. H. Friedman and C. A. Walker, Circadian rhythms in rat midbrain and caudate nucleus biogenic amine levels, J. Physiol. 197: 77–85 (1968).

    PubMed  CAS  Google Scholar 

  83. A. B. Rothballer, The effects of catecholamines on the central nervous system, Pharmacol. Rev. 11: 494–547 (1959).

    PubMed  CAS  Google Scholar 

  84. F. R. Domer and W. Feldberg, in Adrenergic Mechanisms (J. R. Vane, G. E. W. Wolstenholme, and M. O’Connor, eds.) pp. 386–392, Ciba Foundation Symposium, Churchill, London (1960).

    Google Scholar 

  85. P. R. Breggin, Sedative-like effect of epinephrine, Arch. Gen. Psychiat. 12: 255–259 (1965).

    Article  PubMed  CAS  Google Scholar 

  86. E. Marley, Behavioral and electrophysiological effects of catecholamines, Pharmacol. Rev. 18: 753–773 (1966).

    PubMed  CAS  Google Scholar 

  87. W. G. Dewhurst and E. Marley, Action of sympathomimetic and allied amines on the central nervous system of the chicken, Brit. J. Pharmacol. 25: 705–727 (1965).

    PubMed  CAS  Google Scholar 

  88. C. E. Spooner and W. D. Winters, The influence of centrally active amine induced blood pressure changes on the electroencephalogram and behavior, Int. J. Neuropharmacol. 6: 109–118 (1967).

    Article  CAS  Google Scholar 

  89. J. W. Maas and D. H. Landis, Brain norepinephrine and behavior, Psychosomat. Med. 27: 399–407 (1965).

    CAS  Google Scholar 

  90. L. Goldstein and C. Muñoz, Influence of adrenergic stimulant and blocking drugs on cerebral electrical activity in curarized animals, J. Pharmacol Exp. Therap. 132: 345–353 (1961).

    CAS  Google Scholar 

  91. Y. Matsuda, Effects of intraventriculary administered adrenaline on rabbit’s EEG and their modifications by adrenergic blocking agents, Jap. J. Pharmacol. 18: 139 (1968).

    Article  PubMed  CAS  Google Scholar 

  92. G. C. Salmoiraghi, Central adrenergic synapses, Pharmacol. Rev. 18: 717–726 (1968).

    Google Scholar 

  93. J. P. Cordeau, A. Moreau, A. Beaulnes, and C. Laurin, EEG and behavioral changes following micro-injections of acetylcholine and adrenaline in the brain stem of cats, Arch. Ital. Biol. 101: 30–47 (1963).

    PubMed  CAS  Google Scholar 

  94. R. D. Myers, Emotional and autonomic responses following hypothalamic chemical stimulation, Canad. J. Psychol. 18: 6–14 (1964).

    Article  PubMed  CAS  Google Scholar 

  95. D. A. Booth, Localization of the adrenergic feeding system in the rat diencephalon, Science. 158: 515–517 (1967).

    Article  PubMed  CAS  Google Scholar 

  96. A. Hoffer, Marsilid and epinephrine metabolism, Diseases Nervous System. 20: 597–601 (1959).

    CAS  Google Scholar 

  97. J. J. Schildkraut, The catecholamine hypothesis of affective disorders: a review of supporting evidence, Amer. J. Psychiat. 122: 509 (1965).

    PubMed  CAS  Google Scholar 

  98. W. E. Bunney, Jr. and J. M. Davis, Norepinephrine in depressive reactions, a review, Arch. Gen. Psychiat. 13: 483–494 (1965).

    Article  PubMed  CAS  Google Scholar 

  99. A. Carlsson, K. Fuxe, and U. Ungerstedt, The effect of imipramine on central 5-hydroxy-tryptamine neurons, J. Pharm. Pharmac. 20: 150 (1968).

    Article  CAS  Google Scholar 

  100. K. Fuxe and U. Ungerstedt, Histochemical studies on the effect of ( +)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxy-tryptamine neurons after intraventricular injection of catecholamines and 5-hydroxy-tryptamine, Europ. J. Pharmacol. 4: 135–144 (1968).

    Article  CAS  Google Scholar 

  101. A. Carlsson, K. Fuxe, B. Hamberger, and M. Lindqvist, Biochemical and histochemical studies on the effects of imipramine-like drugs and ( + )-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67: 481–497 (1966).

    Article  PubMed  CAS  Google Scholar 

  102. J. J. Schildkraut, G. L. Klerman, R. Hammond, and D. G. Friend, Excretion of 3-methoxy-4-hydroxymandelic acid (VMA) in depressed patients treated with antidepressant drugs, J. Psychiat. Res. 2: 257 (1964).

    Article  CAS  Google Scholar 

  103. J. J. Schildkraut, E. K. Gordon, and J. Durell, Catecholamine metabolism in affective disorders: I. Normetanephrine and VMA excretion in depressed patients treated with imipramine, J. Psychiat. Res. 3: 213–228 (1965).

    Article  PubMed  CAS  Google Scholar 

  104. A. Carlsson and B. Waldeck, Different mechanisms of drug-induced release of noradrenaline and its congeners α-methyl-noradrenaline and metaraminol, Europ. J. Pharmacol. 4: 165–168 (1968).

    Article  CAS  Google Scholar 

  105. R. I. Katz, T. N. Chase, and I. J. Kopin, Evoked release of norepinephrine and serotonin from brain slices, Science 162: 466–467 (1968).

    Article  PubMed  CAS  Google Scholar 

  106. R. Waziri, Presynaptic effects of lithium on cholinergic synaptic transmission in Aplysia neurons, Life Sci. 7: 865 (1968).

    Article  Google Scholar 

  107. N. Matussek and M. Linsmayer, The effect of lithium and amphetamine on desmethyl-imipramine—RO 4-1284 induced motor hyperactivity, Life Sci. 7: 371–375 (1968).

    Article  PubMed  CAS  Google Scholar 

  108. R. W. Colburn, F. K. Goodwin, W. E. Bunney, Jr., and J. M. Davis, Effect of lithium on the uptake of noradrenaline by synaptosomes, Nature 215: 1395–1397 (1967).

    Article  PubMed  CAS  Google Scholar 

  109. J. J. Schildkraut, S. M. Schanberg, and I. J. Kopin, The effects of lithium ion on H3-norepinephrine metabolism in brain, Life Sci. 5: 1479–1483 (1966).

    Article  PubMed  CAS  Google Scholar 

  110. H. Corrodi, K. Fuxe, T. Hõkfelt, and M. Schou, The effect of lithium on cerebral monoamine neurons, Psychopharmacol. 11: 345–353 (1967).

    Article  CAS  Google Scholar 

  111. H. Weil-Malherbe, The effect of convulsive therapy on plasma adrenaline and noradrenaline, J. Mental Sci. 101: 156–162 (1955).

    CAS  Google Scholar 

  112. L. L. Havens, M. S. Zileli, A. Di Mascio, L. Boling, and A. Goldfien, Changes in catecholamine response to successive electric convulsive treatments, J. Mental Sci. 105: 821–829 (1959).

    CAS  Google Scholar 

  113. T. L. Sourkes, in Chemical Pathology of the Nervous System (J. Folch-Pi, ed.) pp. 611–616, Pergamon Press, New York (1961).

    Google Scholar 

  114. J. J. Schildkraut, S. M. Schanberg, G. R. Breese, and I. J. Kopin, Norepinephrine metabolism and drugs used in the affective disorders: a possible mechanism of action, Amer. J. Psychiat. 124: 600 (1967).

    PubMed  CAS  Google Scholar 

  115. S. S. Kety, F. Javoy, A.-M. Thierry, L. Julou, and J. Glowinski, A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat, Proc. Nat. Acad. Sci. 58: 1249–1254 (1967).

    Article  PubMed  CAS  Google Scholar 

  116. J. Engel, L. C. F. Hanson, B.-E. Roos, and L.-E. Strombergsson, Effect of electroshock on dopamine metabolism in rat brain, Psychopharmacol. 13: 140–144 (1968).

    Article  CAS  Google Scholar 

  117. G. L. Klerman, J. J. Schildkraut, L. L. Hasinbush, M. Greenblatt, and D. G. Friend, Clinical experience with dihydroxyphenylalanine (dopa) in depression, J. Psychiat. Res. 1: 289 (1963).

    Article  Google Scholar 

  118. C. M. B. Pare and M. Sandler, A clinical and biochemical study of a trial of iproniazid in the treatment of depression, J. Neurol. Neurosurg. Psychiat. 22: 247–251 (1959)

    Article  PubMed  CAS  Google Scholar 

  119. W. J. Turner and S. Merlis, A clinical trial of pargyline and dopa in psychotic subjects, Diseases Nervous System 25: 538–541 (1964).

    CAS  Google Scholar 

  120. N. Matussek, H. Pohlmeier, and E. Rüther, Die Wirkung von Dopa auf gehemmte Depressionen, Klin. Woch 44: 727 (1966).

    Article  CAS  Google Scholar 

  121. C. G. Ingvarsson, Orientierende klinische Versuche zur Wirkung des Dioxyphenylalanins (1-dopa) bei endogener Depression, Arzneimittelforsch. 15: 849–852 (1965).

    PubMed  CAS  Google Scholar 

  122. R. Strom-Olsen and H. Weil-Malherbe, Humoral changes in manic depressive psychosis with particular reference to the excretion of catechol amines in urine, J. Mental Sci. 104: 696–704 (1958).

    CAS  Google Scholar 

  123. N. Shinfuku, M. Omura, and M. Kayano, Catechol amines excretion in manic depressive psychosis, Yonago Acta Med. 5: 109–114 (1961).

    Google Scholar 

  124. W. E. Bunney, Jr., G. M. Davis, H. Weil-Malherbe, and E. R. B. Smith, Biochemical changes in psychotic depression, Arch. Gen. Psychiat. 16: 448–460 (1967).

    Article  PubMed  CAS  Google Scholar 

  125. R. T. Rubin, W. M. Young, and B. R. Clark, 17-Hydroxycorticosteroid and vanillylmandelic acid excretion in a rapidly cycling manic-depressive, Psychosomat. Med. 30: 162–171 (1968).

    CAS  Google Scholar 

  126. J. W. Maas and D. H. Landis, In vivo studies of the metabolism of norepinephrine in the central nervous system, J. Pharmacol. Exp. Therap. 163: 147 (1968).

    CAS  Google Scholar 

  127. J. W. Maas, J. Fawcett, and H. Dekirmenjian, 3-Methoxy-4-hydroxy-phenylglycol (MHPG) excretion in depressive states. A pilot study. Arch. Gen. Psychiat. 19: 129 (1968).

    Article  PubMed  CAS  Google Scholar 

  128. S. J. Dencker, J. Häggendal, and U. Malm, Noradrenaline content of cerebrospinal fluid in mental diseases, Lancet II: 754 (1966).

    Article  Google Scholar 

  129. E. Hartmann, Longitudinal studies of sleep and dream patterns in manic-depressive patients, Arch. Gen. Psychiat. 19: 312–329 (1968).

    Article  Google Scholar 

  130. D. M. Shaw, F. E. Camps, and E. G. Eccleston, 5-Hydroxytryptamine in the hind brain of depressive suicides, Brit. J. Psychiat. 113: 1407–1411 (1967).

    Article  PubMed  CAS  Google Scholar 

  131. H. R. Bourne, W. E. Bunney, Jr., R. W. Colburn, J. M. Davis, J. N. Davis, D. M. Shaw, and A. J. Coppen, Noradrenaline, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in hind brains of suicidal patients, Lancet II: 805–808 (1968).

    Article  CAS  Google Scholar 

  132. G. W. Ashcroft, T. B. B. Crawford, D. Eccleston, D. F. Sharman, E. J. MacDougall, J. B. Stanton, and J. K. Binns, 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases, Lancet II: 1049 (1966).

    Article  CAS  Google Scholar 

  133. S. J. Dencker, U. Malm, B. E. Roos, and B. Werdinius, Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania, J. Neurochem. 13: 1545 (1966).

    Article  PubMed  CAS  Google Scholar 

  134. K. Fotherby, G. W. Ashcroft, J. W. Affleck, and A. D. Forrest, Studies on sodium transfer and 5-hydroxyindoles in depressive illness, J. Neurol. Neurosurg. Psychiat. 26: 71–73 (1963).

    Article  PubMed  CAS  Google Scholar 

  135. J. J. Burgermeister, P. Dick, G. Garonne, M. Guggisberg, and R. Tissot, Excrétion urinaire de l’acide 5-hydroxyindole-acetique (5-HIAA) chez 150 malades atteints de syndrome dépressif et d’agitation maniaque (ses modifications par surcharge de 5-hydroxytryptophane, et par la thérapeutique chez les dépressifs), Presse Med. 71: 1116 (1963).

    PubMed  CAS  Google Scholar 

  136. L. Gayral, R. Bierer, and A. Delhom, Urinary excretion of 5-hydroxy-indoleacetic acid in mental depression treated by inhibitors of monoamine oxidase, Proc. of V. internat. Congress, Collegium internat. neuro-psychopharmacol., March 28–31, 1966, Washington, D.C.

    Google Scholar 

  137. H. M. van Praag and B. Leijnse, Die Bedeutung der Monoaminoxydasehemmung als antidepressives Prinzip. I, Psychopharmacol. 4: 1 (1963).

    Article  Google Scholar 

  138. H. M. van Praag, J. Korf, F. van Woudenberg, and T. P. Kits, Influencing the human indoleamine metabolism by means of a chlorinated amphetamine derivative with antidepressive action (p-chloro-N-methylamphetamine), Psychopharmacol. 13: 145–160 (1968).

    Article  Google Scholar 

  139. L. Haškovec and K. Ryšanek, The action of reserpine in imipramine-resistant depressive patients. Clinical and biochemical study, Psychopharmacol. 11: 18–30 (1967).

    Article  Google Scholar 

  140. G. Curzon and A. R. Green, Effect of hydrocortisone on rat brain 5-hydroxytryptamine, Life Sci. 7: 657–663 (1968).

    Article  CAS  Google Scholar 

  141. N. S. Kline and W. Sacks, Relief of depression within one day using an M.A.O. inhibitor and intravenous 5-HTP, Amer. J. Psychiat. 120: 274 (1963).

    PubMed  CAS  Google Scholar 

  142. N. S. Kline, W. Sacks, and G. M. Simpson, Further studies on one day treatment of depression with 5-HTP, Amer. J. Psychiat. 121: 379–381 (1964).

    PubMed  CAS  Google Scholar 

  143. T. Persson and B. E. Roos, 5-Hydroxytryptophan for depression, Lancet II: 987 (1967).

    Article  Google Scholar 

  144. A. Coppen, D. M. Shaw, and J. P. Farrell, Potentiation of the antidepressive effect of a monoamine oxidase inhibitor by tryptophan, Lancet I: 79 (1963).

    Article  Google Scholar 

  145. C. M. B. Pare, Potentiation of monoamine oxidase inhibitors by tryptophan, Lancet II: 527–528 (1963).

    Article  Google Scholar 

  146. D. H. Tedeschi, R. E. Tedeschi, and E. J. Fellows, The effects of tryptamine on the central nervous system, including a pharmacological procedure for the evaluation of iproniazidlike drugs, J. Pharmacol. Exp. Therap. 126: 223 (1959).

    CAS  Google Scholar 

  147. D. Eccleston, G. W. Ashcroft, T. B. B. Crawford, and R. Loose, Some observations on the estimation of tryptamine in tissues, J. Neurochem. 13: 93–101 (1966).

    Article  PubMed  CAS  Google Scholar 

  148. H. Green and J. L. Sawyer, Correlation of tryptamine-induced convulsions in rats with brain tryptamine concentration, Proc. Soc. Exp. Biol. Med. 104: 153–155 (1960).

    PubMed  CAS  Google Scholar 

  149. W. G. Dewhurst, Methysergide in mania, Nature 219: 506–507 (1968).

    Article  PubMed  CAS  Google Scholar 

  150. L. Haskovec and K. Soucek, Trial of methysergide in mania, Nature 219: 507–508 (1968).

    Article  PubMed  CAS  Google Scholar 

  151. A. Coppen, D. M. Shaw, A. Malleson, E. Eccleston, and G. Gundy, Tryptamine metabolism in depression, Brit. J. Psychiat. 111: 993 (1965).

    Article  PubMed  CAS  Google Scholar 

  152. C. L. Cazzulo, A. Mangoni, and G. Mascherpa, Tryptophan metabolism in affective psychoses, Brit. J. Psychiat. 112: 157–162 (1966).

    Article  Google Scholar 

  153. R. T. Rubin, Adrenal cortical activity changes in manic-depressive illness. Influence on intermediary metabolism of tryptophan, Arch. Gen. Psychiat. 17: 671–679 (1967).

    Article  PubMed  CAS  Google Scholar 

  154. K. Altman and O. Greengard, Tryptophan pyrrolase induced in human liver by hydrocortisone: effect on excretion of kynurenine, Science. 151: 332–333 (1966).

    Article  PubMed  CAS  Google Scholar 

  155. R. T. Rubin, Multiple biochemical correlates of manic-depressive illness, J. Psychosomatic Res. 12: 171–180 (1968).

    Article  CAS  Google Scholar 

  156. R. Klein and R. F. Nunn, Clinical and biochemical analysis of a case of manic-depressive psychosis showing regular weekly cycles, J. Mental Sci. 91: 79–88 (1945).

    Google Scholar 

  157. R. Klein, Clinical and biochemical investigations in a manic-depressive with short cycles, J. Mental Sci. 96: 293–297 (1950).

    Google Scholar 

  158. J. L. Crammer, Water and sodium in two psychotics, Lancet 1: 1122 (1959).

    Article  PubMed  CAS  Google Scholar 

  159. R. P. Hullin, A. D. Baily, R. McDonald, G. A. Dransfield, and H. B. Milne, Body water variations in manic-depressive psychosis, Brit. J. Psychiat. 113: 584–592 (1967).

    Article  PubMed  CAS  Google Scholar 

  160. J. Dawson, R. P. Hullin, and B. M. Crocket, Metabolic variations in manic-depressive psychosis, J. Mental Sci. 102: 168–177 (1956).

    CAS  Google Scholar 

  161. A. Coppen and D. M. Shaw, Mineral metabolism in melancholia, Brit. Med. J. II: 1439 (1963).

    Article  Google Scholar 

  162. A. Coppen, D. M. Shaw, A. Malleson, and R. Costain, Mineral metabolism in mania, Brit. Med. J. I: 71–75 (1966).

    Article  Google Scholar 

  163. G. F. M. Russell, Body weight and balance of water, sodium and potassium in depressed patients given electro-convulsive therapy, Clin. Sci. 19: 327 (1960).

    PubMed  CAS  Google Scholar 

  164. M. D. Altschule and K. J. Tillotson, Effect of electro-convulsive therapy on water metabolism in psychotic patients, Amer. J. Psychiat. 105: 829–832 (1949).

    PubMed  CAS  Google Scholar 

  165. R. P. Hullin, A. D. Bailey, R. McDonald, G. A. Dransfield, and H. B. Milne, Variations in body water during recovery from depression, Brit. J. Psychiat. 113: 573–583 (1967).

    Article  PubMed  CAS  Google Scholar 

  166. W. McC. Anderson and J. Dawson, Verbally retarded depression and sodium metabolism, Brit. J. Psychiat. 109: 225 (1963).

    Article  PubMed  CAS  Google Scholar 

  167. W. McC. Anderson, J. Dawson, and J. H. Margerison, Serial biochemical, clinical and electroencephalographic studies in affective illness, Clin. Sci. 26: 323–336 (1964).

    PubMed  CAS  Google Scholar 

  168. J. L. Gibbons, Total body sodium and potassium in depressive illness, Clin. Sci. 19: 133 (1960).

    PubMed  CAS  Google Scholar 

  169. Annual Report, Mental Health Intramural Research Program, National Institute of Mental Health, Vol. 1, 35, 1968.

    Google Scholar 

  170. D. M. Shaw and A. Coppen, Potassium and water distribution in depression, Brit. J. Psychiat. 112: 269–276 (1966).

    Article  PubMed  CAS  Google Scholar 

  171. A. J. Coppen, Abnormality of the blood-cerebrospinal fluid barrier of patients suffering from a depressive illness, J. Neurol. Neurosurg. Psychiat. 23: 156 (1960).

    Article  PubMed  CAS  Google Scholar 

  172. A. I. M. Glen, G. C. Ongley, and K. Robinson, Diminished membrane transport in manicdepressive psychosis and recurrent depression, Lancet II: 241–243 (1968).

    Article  Google Scholar 

  173. A. Coppen and D. M. Shaw, The distribution of electrolytes and water in patients after taking lithium carbonate, Lancet II: 805 (1967).

    Article  Google Scholar 

  174. Annual Report, Mental Health Intramural Research Program, Division of Clinical, Behavioral and Biological Research, National Institute of Mental Health, Vol. II, 101, 1968.

    Google Scholar 

  175. J. F. J. Cade, A significant elevation of plasma magnesium levels in schizophrenia and depressive states, Med. J. Austral. 1: 195–196 (1964).

    PubMed  CAS  Google Scholar 

  176. F. F. Flach, Calcium metabolism in states of depression, Brit. J. Psychiat. 110: 588 (1964).

    Article  PubMed  CAS  Google Scholar 

  177. J. Nielsen, Magnesium-lithium studies. I. Serum and erythrocyte magnesium in patients with manic states during lithium treatment, Acta Psychiat. Scand. 40: 190 (1964).

    Article  PubMed  CAS  Google Scholar 

  178. J. A. Fawcett and W. E. Bunney, Jr., Pituitary adrenal function and depression. An outline for research. Arch. Gen. Psychiat. 16: 517–535 (1967).

    Article  PubMed  CAS  Google Scholar 

  179. R. P. Michael and J. L. Gibbons, Interrelationships between the endocrine system and neuropsychiatry, Intern. Rev. Neurobiol. 5: 243–302, Academic Press, New York (1963).

    Google Scholar 

  180. D. Ikkos and R. Luft, On the intravenous glucose tolerance test. Acta Endocrinol. 25: 312–334 (1957).

    PubMed  CAS  Google Scholar 

  181. I.G. Pryce, Melancholia, glucose tolerance and body weight, J. Mental Sci. 104: 421–427 (1958).

    CAS  Google Scholar 

  182. I. G. Pryce, The relationship between glucose tolerance, body weight and clinical state in melancholia, J. Mental Sci. 104: 1079 (1958).

    CAS  Google Scholar 

  183. H. M. van Praag and B. Leijnse, Some aspects of the metabolism of glucose and of the nonesterified fatty acids in depressive patients, Psychopharmacol. 9, 220–233 (1966).

    Article  Google Scholar 

  184. I. G. Pryce, The relationship between 17-hydroxycorticosteroid excretion and glucose utilization in depressions, Brit. J. Psychiat. 110: 90 (1964).

    Article  PubMed  CAS  Google Scholar 

  185. R. J. Jarrett and H. J. Graver, Changes in oral glucose tolerance during the menstrual cycle, Brit. Med. J. 2: 528 (1968).

    Article  PubMed  CAS  Google Scholar 

  186. H. Weil-Malherbe and A. D. Bone, Activators and inhibitors of hexokinase in human blood, J. Mental Sci. 97: 635–662 (1951).

    CAS  Google Scholar 

  187. H. M. van Praag and B. Leijnse, Depression, glucose tolerance, peripheral glucose uptake and their alterations under the influence of anti-depressive drugs of the hydrazine type, Psychopharmacol. 8: 67 (1965).

    Article  Google Scholar 

  188. A. J. Cooper and K. M. G. Keddie, Hypotensive collapse and hypoglycaemia after mebanazine—a monoamine-oxidase inhibitor, Lancet I: 1133–1135 (1964).

    Article  Google Scholar 

  189. A. J. Cooper and G. Ashcroft, Potentiation of insulin hypoglycaemia by M.A.O.I. antidepressant drugs, Lancet I: 407–409 (1966).

    Article  Google Scholar 

  190. B. Herzberg, A. Coppen, and V. Marks, Glucose tolerance in depression, Brit. J. Psychiat. 114: 627–630 (1968).

    Article  PubMed  CAS  Google Scholar 

  191. D. H. Henneman, M. D. Altschule, and R. M. Goncz, Carbohydrate metabolism in brain disease. 11. Glucose metabolism in schizophrenic, manic-depressive and involutional psychoses, Arch. Internal Med. 94, 402–416 (1954).

    Article  CAS  Google Scholar 

  192. W. M. Anderson and J. Dawson, The clinical manifestations of depressive illness with abnormal acetylmethylcarbinol metabolism, J. Mental Sci. 108: 80–87 (1962).

    CAS  Google Scholar 

  193. M. Assael and M. Thein, Blood acetaldehyde levels in affective disorders, Israel Ann. Psychiat. 2: 228–234 (1964).

    Google Scholar 

  194. R. T. Rubin and A. J. Mandell, Adrenal cortical activity in pathological emotional states: a review, Amer. J. Psychiat. 123: 387–400 (1966).

    PubMed  CAS  Google Scholar 

  195. E. J. Sachar, Corticosteroids in depressive illness. 1. A. re-evaluation of control issues and the literature, Arch. Gen. Psychiat. 17: 544–553 (1967).

    Article  Google Scholar 

  196. M. Schwartz, A. J. Mandell, R. Green, and R. Ferman, Mood, motility and 17-hydroxycorticoid excretion; a polyvariable case study, Brit. J. Psychiat. 112: 149–156 (1966).

    Article  PubMed  CAS  Google Scholar 

  197. P. S. Lingjaerde, Plasma hydrocortisone in mental disease, Brit. J. Psychiat. 110: 423 (1964).

    Article  PubMed  CAS  Google Scholar 

  198. H. Persky, Adrenal cortical function in anxious human subjects, Arch. Neurol, and Psychiat. 78: 95 (1957).

    CAS  Google Scholar 

  199. E. L. Bliss, C. J. Migeon, C. H. Branch, and L. T. Samuels, Reaction of the adrenal cortex to emotional stress, Psychosomat. Med. 18: 56–76 (1956).

    CAS  Google Scholar 

  200. D. B. Price, M. Thaler, and J. W. Mason, Preoperative emotional states and adrenal cortical activity, Arch. Neurol, and Psychiat. 77: 646 (1957).

    CAS  Google Scholar 

  201. J. R. Hodges, M. T. Jones, and M. A. Stockham, Effect of emotion on blood corticotropin and Cortisol concentrations in man, Nature 193: 1187 (1962).

    Article  PubMed  CAS  Google Scholar 

  202. F. K. Goodwin, D. L. Murphy, and W. E. Bunney, Jr., Behavioral-biochemical studies of lithium treatment, Scientific Proceedings, A.P. A. Annual Meeting, 233 (1968).

    Google Scholar 

  203. E. J. Sachar, Corticosteroids in depressive illness. II. A longitudinal psychoendocrine study, Arch. Gen. Psychiat. 17: 554 (1967).

    Article  PubMed  CAS  Google Scholar 

  204. W. M. Anderson and J. Dawson, The variability of plasma 17-hydroxycorticosteroid levels in affective illness and schizophrenia, J. Psychosomatic Res. 9: 237 (1965).

    Article  CAS  Google Scholar 

  205. E.J. Sachar, J. M. MacKenzie, W. A. Binstock, and J. E. Mack, Corticosteroid responses to psychotherapy of depressions. I. Elevations during “confrontation of loss,” Arch. Gen. Psychiat. 16: 461 (1957).

    Article  Google Scholar 

  206. W. E. Bunney, Jr., J. W. Mason, J. F. Roatch, and D. A. Hamburg, A psychoendocrine study of severe psychotic depressive crises, Amer. J. Psychiat. 122: 72–80 (1965).

    Google Scholar 

  207. F. N. Lohrenz, D. T. Fullerton, H. Fahs, and F. J. Wenzel, Adrenocortical function in depressive states—study of circadian variation in plasma and urinary steroids, Internat. J. Neuropsychiat. 4: 21 (1968).

    CAS  Google Scholar 

  208. R. Green, Morning and afternoon plasma 17-hydroxycorticosteroid levels during affective psychosis, Internat. J. Neuropsychiat. 3: 133 (1967).

    CAS  Google Scholar 

  209. S. R. Platman and R. R. Fieve, Lithium carbonate and plasma Cortisol response in the affective disorders, Arch. Gen. Psychiat. 18: 591 (1968).

    Article  PubMed  CAS  Google Scholar 

  210. R. J. Doig, R. V. Mummery, M. R. Wills, and A. Elkes, Plasma Cortisol levels in depression Brit. J. Psychiat. 112: 1263–1267 (1966).

    Article  PubMed  CAS  Google Scholar 

  211. P. K. Bridges and M. T. Jones, The diurnal rhythm of plasma Cortisol concentration in depression, Brit. J. Psychiat. 112: 1257–1261 (1966).

    Article  PubMed  CAS  Google Scholar 

  212. R. W. Bryson and D. F. Martin, 17-Ketosteroid excretion in a case of manic-depressive psychosis, Lancet II: 365–367 (1954).

    Article  Google Scholar 

  213. W. E. Bunney, Jr., E. L. Hartmann, and J. W. Mason, Study of a patient with 48 hour manic-depressive cycles: II. Strong positive correlation between endocrine factors and manic defense patterns, Arch. Gen. Psychiat. 12: 619–625 (1965).

    Article  PubMed  Google Scholar 

  214. R. P. Hullin, A. D. Bailey, R. McDonald, G. A. Dransfield, and H. B. Milne, Variations in 11-hydroxycorticosteroids in depression and manic-depressive psychosis, Brit. J. Psychiat. 113: 593–600 (1967).

    Article  PubMed  CAS  Google Scholar 

  215. J. L. Gibbons and P. R. McHugh, Plasma Cortisol in depressive illness, J. Psychiat. Res. 1: 162–171 (1962).

    Article  PubMed  CAS  Google Scholar 

  216. B. J. Carroll, F. I. R. Martin, and B. Davies, Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness, Brit. Med. J. 3: 285 (1968).

    Article  PubMed  CAS  Google Scholar 

  217. P. W. P. Butler and G. M. Besser, Pituitary-adrenal function in severe depressive illness, Lancet I: 1234 (1968).

    Article  Google Scholar 

  218. B. J. Carroll, F. I. R. Martin, and B. Davies, Pituitary-adrenal function in depression, Lancet I: 1373 (1968).

    Article  Google Scholar 

  219. G. G. Nahas and O. S. Steinsland, Increased rate of catecholamine synthesis during respiratory acidosis, Respiration Physiol. 3: 108–117 (1968).

    Article  Google Scholar 

  220. G. Curzon and A. R. Green, Effects of immobilization on rat liver tryptophan pyrrolase and brain 5-hydroxytryptamine metabolism, Brit. J. Pharmacol. 37: 689–697 (1969).

    CAS  Google Scholar 

  221. A. N. Thierry, M. Fekete, and J. Glowinski, Effects of stress on the metabolism of noradrenaline, dopamine and serotonin (5HT) in the central nervous system of the rat. II. Modifications of serotonin metabolism, Europ. J. Pharmacol. 4: 384–389 (1968).

    Article  CAS  Google Scholar 

  222. S. Garattini, E. Giacalone, and L. Valzelli, Isolation, aggressiveness and brain 5-hydroxytryptamine turnover, J. Pharm. Pharmacol. 19: 338–339 (1967).

    Article  PubMed  CAS  Google Scholar 

  223. M. E. Goldberg and A. I. Salama, Amphetamine toxicity and brain monoamines in three models of stress, Toxicol. Appl. Pharmacol. 14: 447–456 (1969).

    Article  PubMed  CAS  Google Scholar 

  224. A.-M. Thierry, G. Blanc, and J. Glowinski, Preferential utilization of newly synthesized norepinephrine in the brain stem of stressed rats, Europ. J. Pharmacol. 10: 139–142 (1970).

    Article  CAS  Google Scholar 

  225. L. Stein and C. D. Wise, Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine, J. Comp. Physiol. Psychol. 67: 189–198 (1969).

    Article  PubMed  CAS  Google Scholar 

  226. M. A. Simmonds, Effect of environmental temperature on the turnover of noradrenaline in hypothalamus and other areas of rat brain, J. Physiol. 203: 199–210 (1969).

    PubMed  CAS  Google Scholar 

  227. M. A. Simmonds and L. L. Iversen, Thermoregulation: effects of environmental temperature on turnover of hypothalamic norepinephrine, Science 163: 473–474 (1969).

    Article  PubMed  CAS  Google Scholar 

  228. W. D. Reid, L. Volicer, H. Smookler, M. A. Beaven, and B. B. Brodie, Brain amines and temperature regulation, Pharmacol. (Basel) 1: 329–344 (1968).

    Article  CAS  Google Scholar 

  229. M. E. Goldberg and A.I. Salama, Norepinephrine turnover and brain monoamine levels in aggressive mouse-killing rats, Biochem. Pharmacol. 18: 532–534 (1969).

    Article  PubMed  CAS  Google Scholar 

  230. M. H. Katz, H. C. Yen-Koo, and S. Krop, The effects of psychoactive drugs on 3,4-dihydroxyphenylalanine (DL-Dopa) induced excitation in mice, Fed. Proc. 26: 289 (1967).

    Google Scholar 

  231. W. Kostowski, E. Giacalone, S. Garattini and L. Valzelli, Studies on behavioural and biochemical changes in rats after lesion of midbrain raphé Europ. J. Pharmacol. 4: 371–376 (1968).

    Article  CAS  Google Scholar 

  232. K.E. Moore, Development of tolerance to the behavioural depressant effects of α-methyltyrosine, J. Pharm. Pharmacol. 20: 805–807 (1968).

    Article  PubMed  CAS  Google Scholar 

  233. H. Takagi, M. Satoh, K. Yamatsu, K. Kimura, and M. Nakama, Central effects of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophane on tetrabenazine pretreated rabbits with special reference to the possible role of catecholamine and serotonin in the brain, Int. J. Neuropharmacol. 7: 265–273 (1968).

    Article  PubMed  CAS  Google Scholar 

  234. D. A. Stevens, L. D. Fechter, and O. Resnick, The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior: II. Retardation of passive avoidance learning, Life Sci. 8: 379–385 (1969).

    Article  PubMed  CAS  Google Scholar 

  235. R. C. Robichaud and K. L. Sledge, The effects of p-chlorophenylalanine on experimentally induced conflict in the rat, Life Sci. 8: 965–969 (1969).

    Article  PubMed  CAS  Google Scholar 

  236. E. Lycke, K. Modigh, and B.-E. Roos, Aggression in mice associated with changes in the monoamine metabolism of the brain, Experientia 25: 951–953 (1969).

    Article  PubMed  CAS  Google Scholar 

  237. T. L. Chrusciel and Z. S. Herman, Effect of dopalanine on behaviour in mice depleted of norepinephrine or serotonin, Psychopharmacologia 14: 124–134 (1969).

    Article  PubMed  CAS  Google Scholar 

  238. M. H. Sheard, The effect of p-chlorophenylalanine on behavior in rats: relation to brain serotonin and 5-hydroxyindoleacetic acid, Brain Res. 15: 524–528 (1969).

    Article  PubMed  CAS  Google Scholar 

  239. R. I. Schoenfeld and L. S. Seiden, Effect of α-methyltyrosine on operant behavior and brain catecholamine levels, J. Pharmacol. Exp. Ther. 167: 319–327 (1969).

    PubMed  CAS  Google Scholar 

  240. M. Hollinger, Effect of reserpine, α-methyl-p-tyrosine, p-chlorophenylalanine and pargyline on levorphanol-induced running activity in mice, Arch. Int. Pharmacodyn. 179: 419–424 (1969).

    PubMed  CAS  Google Scholar 

  241. I. Geller and K. Blum, The effects of 5-HTP on para-chlorophenylalanine (p-CPA) attenuation of “conflict” behavior, Europ. J. Pharmacol. 9: 319–324 (1970).

    Article  CAS  Google Scholar 

  242. F. G. Graeff and R. I. Schoenfeld, Tryptaminergic mechanisms in punished and nonpunished behavior, J. Pharmacol. Exp. Ther. 173: 277–283 (1970).

    PubMed  CAS  Google Scholar 

  243. A. Tagliamonte, P. Tagliamonte, G. L. Gessa, and B. B. Brodie, Compulsive sexual activity induced by p-chlorophenylalanine in normal and pinealectomized male rats, Science 166: 1433–1435 (1969).

    Article  PubMed  CAS  Google Scholar 

  244. G. L. Gessa, A. Tagliamonte, P. Tagliamonte, and B. Brodie, Essential role of testosterone in the sexual stimulation induced by p-chlorophenylalanine in male animals, Nature (Lond.) 227: 616–617 (1970).

    Article  CAS  Google Scholar 

  245. J. Ferguson, S. Henriksen, H. Cohen, G. Mitchell, J. Barchas, and W. Dement, “Hypersexuality” and behavioral changes in cats caused by administration of p-chlorophenylalanine, Science 168: 499–501 (1970).

    Article  PubMed  CAS  Google Scholar 

  246. A. Carlsson and M. Lindqvist, Metatyrosine as a tool for selective protection of catecholamine stores against reserpine, Europ. J. Pharmacol. 2: 187 (1967/68).

    Article  CAS  Google Scholar 

  247. A. Randrup and W. Jonas, Brain dopamine and the amphetamine-reserpine interaction, J. Pharm. Pharmacol. 19: 483 (1967).

    Article  PubMed  CAS  Google Scholar 

  248. R. L. Fog, A. Randrup, and H. Pakkenberg, Aminergic mechanisms in corpus striatum and amphetamine-induced stereotyped behaviour, Psychopharmacologia 11: 179–183 (1967).

    Article  PubMed  CAS  Google Scholar 

  249. K. M. Taylor and S. H. Snyder, Amphetamine: differentiation by d- and l-isomers of behavior involving brain norepinephrine or dopamine, Science 168: 1487–1489 (1970).

    Article  PubMed  CAS  Google Scholar 

  250. R. J. Wyatt, K. Engelman, D. J. Kupfer, J. Scott, A. Sjoerdsma, and F. Snyder, Effects of para-chlorophenylalanine on sleep in man, Electroenceph. Clin. Neurophysiol. 27: 529–532 (1969).

    Article  PubMed  CAS  Google Scholar 

  251. R. J. Wyatt, D. J. Kupfer, J. Scott, D. S. Robinson, and F. Snyder, Psychopharmacologia 15: 236–244 (1969).

    PubMed  CAS  Google Scholar 

  252. R. J. Wyatt, K. Engelman, T. Chase, D. Fram, D. Kupfer, F. Snyder, and A. Sjoerdsma, Annual Report, Vol. 3, p. 193. Nat. Inst. Mental Health, Div. Special Mental Health Research (1970).

    Google Scholar 

  253. I. Oswald, G. W. Ashcroft, R. J. Berger, D. Eccleston, J. I. Evans, and V. R. Thacore, Some experiments in the chemistry of sleep, Brit. J. Psychiat. 112: 391–399 (1966).

    Article  PubMed  CAS  Google Scholar 

  254. G. L. Gessa, P. F. Spano, L. Vargiu, F. Crabai, A. Tagliamonte, and L. Mameli, Effect of 1,4-butanediol and other butyric acid congeners on brain catecholamines, Life Sci. 7: 289 (1968).

    Article  PubMed  CAS  Google Scholar 

  255. A. A. Rizzoli, S. Agosti, and L. Galzigna, Interaction between cerebral amines and 4-hydroxybutyrate in the induction of sleep, J. Pharm. Pharmacol. 21: 465–466 (1969).

    Article  PubMed  CAS  Google Scholar 

  256. Z. S. Herman, The effects of noradrenaline on rats’ behaviour, Psychopharmacologia 16: 369–374 (1970).

    Article  PubMed  CAS  Google Scholar 

  257. D. S. Segal and A. J. Mandell, Behavioral activation of rats during intraventricular infusion of norepinephrine, Proc. Nat. Acad. Sci. 66: 289–293 (1970).

    Article  PubMed  CAS  Google Scholar 

  258. O. Benkert, Measurement of hyperactivity in rats in a dose-response curve after intrahypothalamic norepinephrine injection, Life Sci. 8: 943–948 (1969).

    Article  PubMed  CAS  Google Scholar 

  259. C. D. Wise and L. Stein, Facilitation of brain self-stimulation by central administration ofnorepinephrine, Science 163: 299–301 (1969).

    Article  PubMed  CAS  Google Scholar 

  260. S. F. Leibowitz, Hypothalamic β-adrenergic “satiety” system antagonizes an α-adrenergic “hunger” system in the rat, Nature (Lond.) 226: 963–964 (1970).

    Article  CAS  Google Scholar 

  261. J. H. Court, Manic-depressive psychosis: an alternative conceptual model, Brit. J. Psychiat. 114: 1523–1530 (1968).

    Article  PubMed  CAS  Google Scholar 

  262. P. C. Whybrow and J. Mendels, Toward a biology of depression: some suggestions from neurophysiology, Amer. J. Psychiat. 125: 1491–1500 (1969).

    PubMed  CAS  Google Scholar 

  263. A. Carlsson, H. Corrodi, K. Fuxe, and T. Hökfelt, Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethylmeta-tyrosine, Europ. J. Pharmacol. 5: 357–366 (1969).

    Article  CAS  Google Scholar 

  264. H. Corrodi and K. Fuxe, Decreased turnover in central 5-HT nerve terminals induced by antidepressant drugs of the imipramine type, Europ. J. Pharmacol. 7: 56–59 (1969).

    Article  CAS  Google Scholar 

  265. J. Meek and B. Werdinius, Hydroxytryptamine turnover decreases by the antidepressant drug chlorimipramine, J. Pharm. Pharmacol. 22: 141–143 (1970).

    Article  PubMed  CAS  Google Scholar 

  266. J. Schubert, H. Nybäck, and G. Sedvall, Effect of antidepressant drugs on accumulation and disappearance of monoamines formed in vivo from labelled precursors in mouse brain, J. Pharm. Pharmacol. 22: 136–138 (1970).

    Article  PubMed  CAS  Google Scholar 

  267. J. J. Schildkraut, A. Winokur, and C. W. Applegate, Norepinephrine turnover and metabolism in rat brain after long-term administration of imipramine, Science 168: 867–869 (1970).

    Article  PubMed  CAS  Google Scholar 

  268. N. H. Neff and E. Costa, Effect of tricyclic antidepressants and chlorpromazine on brain catecholamine synthesis. Proc. First Internat. Sympos. on Antidepressant Drugs, Excerpta Medica Internat. Congr. Series 122, 28–34 (1966).

    Google Scholar 

  269. A. I. Salama and M. E. Goldberg, Neurochemical effects of imipramine and amphetamine in aggressive mouse-killing (muricidal) rats, Biochem. Pharmacol. 19: 2023–2032 (1970).

    Article  PubMed  CAS  Google Scholar 

  270. M. J. Besson, A. Cheramy, and J. Glowinski, Effects of amphetamine and desmethylimipramine on amine synthesis and release in central catecholamine containing neurons, Europ. J. Pharmacol. 7: 111–114 (1969).

    Article  CAS  Google Scholar 

  271. A. J. Prange, I. C. Wilson, A. M. Rabon, and M. A. Lipton, Enhancement of imipramine antidepressant activity by thyroid hormone, Amer. J. Psychiat. 126: 457–469 (1969).

    PubMed  CAS  Google Scholar 

  272. A. J. Prange, Jr., I. C. Wilson, A. Knox, T. K. McClane, and M. A. Lipton, Enhancement of imipramine by thyroid stimulating hormone: clinical and theoretical implications, Amer. J. Psychiat. 127: 191–199 (1970).

    PubMed  Google Scholar 

  273. D. L. Murphy, R. W. Colburn, J. M. Davis, and W. E. Bunney, Jr. Imipramine and lithium effects on biogenic amine transport in depressed and manic-depressed patients, Amer. J. Psychiat. 127: 339–345 (1970).

    PubMed  CAS  Google Scholar 

  274. D. N. Stern, R. R. Fieve, N. H. Neff, and E. Costa, The effect of lithium chloride administration on brain and heart norepinephrine turnover rates, Psychopharmacologia 14: 315–322 (1969).

    Article  PubMed  CAS  Google Scholar 

  275. J. J. Schildkraut, M. A. Logue, and G. A. Dodge, The effects of lithium salts on the turnover and metabolism of norepinephrine in rat brain, Psychopharmacologia 14: 135–141 (1969).

    Article  PubMed  CAS  Google Scholar 

  276. K. Greenspan, M. S. Aronoff, and D. F. Bogdanski, Effects of lithium carbonate on turnover and metabolism of norepinephrine in the rat brain. Correlation to gross behavioral effects, Pharmacol. 3: 129–136 (1970).

    Article  CAS  Google Scholar 

  277. H. Corrodi, K. Fuxe, and M. Schou, The effect of prolonged lithium administration on cerebral monoamine neurons in the rat, Life Sci. 8: 643–651 (1969).

    Article  PubMed  CAS  Google Scholar 

  278. J. J. Schildkraut, S. M. Schanberg, G. R. Breese, and I. J. Kopin, Effects of psychoactive drugs on the metabolism of intracisternally administered serotonin in rat brain, Biochem. Pharmacol. 18: 1971–1978 (1969).

    Article  PubMed  CAS  Google Scholar 

  279. M. H. Sheard and G. K. Aghajanian, Neuronally activated metabolism of brain serotonin: effect of lithium, Life Sci. 9, I: 285–290 (1970).

    Article  PubMed  CAS  Google Scholar 

  280. A. K. S. Ho, H. H. Loh, F. Craves, R. J. Hitzmann, and S. Gershon, The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats, Europ. J. Pharmacol. 10: 72–78 (1970).

    Article  CAS  Google Scholar 

  281. M. J. Meier and W. E. Martin, Intellectual changes associated with levodopa therapy, J. Amer. Med. Assoc. 213: 465–466 (1970).

    Article  CAS  Google Scholar 

  282. R. B. Godwin-Austen, E. B. Tomlinson, C. C. Frears, and H. W. L. Kok, Effects of L-dopa in Parkinson’s disease, Lancet II: 165–168 (1969).

    Article  Google Scholar 

  283. A. M. Wagshul and R. B. Daroff, Depression during L-dopa treatment, Lancet II: 592 (1969).

    Article  Google Scholar 

  284. G. G. Celesia and A. N. Barr, Psychosis and other psychiatric manifestations of levodopa therapy, Arch. Neurol. 23: 193–200 (1970).

    Article  PubMed  CAS  Google Scholar 

  285. R. B. Jenkins and R. H. Groh, Mental symptoms in parkinsonian patients treated with L-dopa, Lancet II: 177 (1970).

    Article  Google Scholar 

  286. R. B. Jenkins and R. H. Groh, Psychic effects in patients treated with levodopa, J. Amer. Med. Assoc. 212: 2265 (1970).

    Article  CAS  Google Scholar 

  287. W. E. Bunney, Jr., D. S. Janowsky, F. K. Goodwin, J. M. Davis, H. K. H. Brodie, D. L. Murphy, and T. N. Chase, Effect of L-dopa on depression, Lancet I: 885–886 (1969).

    Article  Google Scholar 

  288. W. E. Bunney, Jr., D. L. Murphy, H. K. H. Brodie, and F. K. Goodwin, L-Dopa in depressed patients, Lancet I: 352 (1970).

    Article  Google Scholar 

  289. F. K. Goodwin, H. K. H. Brodie, D. L. Murphy, and W. E. Bunney, Jr., Administration of a peripheral decarboxylase inhibitor with L-dopa to depressed patients, Lancet I: 908–911 (1970).

    Article  Google Scholar 

  290. K. Greenspan, J. J. Schildkraut, E. K. Gordon, B. Levy, and J. Durell, Catecholamine metabolism in affective disorders. II. Norepinephrine, normetanephrine, epinephrine, metanephrine and VMA excretion in hypomanic patients, Arch. Gen. Psychiat. 21: 710–716 (1969).

    Article  PubMed  CAS  Google Scholar 

  291. K. Greenspan, J. J. Schildkraut, E. K. Gordon, L. Baer, M. S. Aronoff, and J. Durell, Catecholamine metabolism in affective disorders. III. MHPG and other catecholamine metabolites in patients treated with lithium carbonate, J. Psychiat. Res. 7: 171–183 (1970).

    Article  PubMed  CAS  Google Scholar 

  292. B.-E. Roos and R. Sjöström, 5-Hydroxyindoleacetic acid (and homovanillic acid) levels in the cerebrospinal fluid after probenecid application in patients with manic-depressive psychosis, Pharmacol. Clin. 1: 153–155 (1969).

    Article  CAS  Google Scholar 

  293. Y. H. Abdulla and K. Hamadah, 3′,5′-Cyclic adenosine monophosphate in depression and mania, Lancet I: 378–381 (1970).

    Article  Google Scholar 

  294. E. N. Ramsden, Cyclic AMP in depression and mania, Lancet II: 108 (1970).

    Article  Google Scholar 

  295. A. R. Somerville, M. L. Rabouhans, and A. A. Smith, Adenosine 3′:′-cyclic monophosphate phosphodiesterase: kinetic and inhibitor studies, Biochem. J. 120: 11P (1970).

    PubMed  CAS  Google Scholar 

  296. M. I. Paul, B. R. Ditzion, G. L. Pauk, and D. S. Janowsky, Urinary adenosine 3′,5′-monophosphate excretion in affective disorders, Amer. J. Psychiat. 126: 1493–1497 (1970).

    PubMed  CAS  Google Scholar 

  297. C. M. B. Pare, D. P. H. Young, K. Price, and R. S. Stacey, 5-Hydroxytryptamine, noradrenaline and dopamine in brainstem, hypothalamus and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning, Lancet II: 133–135 (1969).

    Article  CAS  Google Scholar 

  298. H. M. van Praag, J. Korf, and J. Puite, 5-Hydroxyindoleacetic acid levels in the cerebrospinal fluid of depressive patients treated with probenecid, Nature (Lond.) 225: 1259–1260 (1970).

    Article  Google Scholar 

  299. H. M. van Praag, J. Korf, F. van Woudenberg, and T. P. Kits, Influencing the human indoleamine metabolism by means of a chlorinated amphetamine derivative with antidepressive action (p-chloro-N-methylamphetamine), Psychopharmacologia 13: 145–160 (1968).

    Article  PubMed  Google Scholar 

  300. S. J. Strada, E. Sanders-Bush, and F. Sulser, p-Chloroamphetamine. Temporal relationship between psychomotor stimulation and metabolism of brain norepinephrine, Biochem. Pharmacol. 19: 2621–2629 (1970).

    Article  PubMed  CAS  Google Scholar 

  301. N. S. Shah, S. Stevens, and H. E. Himwich, Effect of chronic administration of cortisone on the tryptophan induced changes in amine levels in the rat brain, Arch. Int. Pharmacodyn. 171: 285 (1968).

    PubMed  CAS  Google Scholar 

  302. A. R. Green and G. Curzon, Decrease of 5-hydroxytryptamine in the brain provoked by hydrocortisone and its prevention by allopurinol, Nature, (Lond.) 220: 1095–1097 (1968).

    Article  CAS  Google Scholar 

  303. G. Curzon, Tryptophan pyrrolase—a biochemical factor in depressive illness? Brit. J. Psychiat. 115: 1367–1374 (1969).

    Article  PubMed  CAS  Google Scholar 

  304. D. P. Rose, Oral contraceptives and depression, Lancet II: 321 (1969).

    Article  Google Scholar 

  305. E. C. G. Grant and J. Pryse-Davies, Effect of oral contraceptives on depressive mood changes and on endometrial monoamine oxidase and phosphatases, Brit. Med. J. 3: 111–780 (1969).

    Google Scholar 

  306. A. Lewis and M. Hoghughi, An evaluation of depression as a side effect of oral contraceptives, Brit. J. Psychiat. 115: 697–701 (1969).

    Article  PubMed  CAS  Google Scholar 

  307. A. Coppen, D. M. Shaw, B. Herzberg, and R. Maggs, Tryptophan in the treatment of depression, Lancet II: 1178–1180 (1967).

    Article  Google Scholar 

  308. A. H. Glassman and S. R. Platman, Potentiation of a monoamine oxidase inhibitor by tryptophan, J. Psychiat. Res. 7: 83–88 (1969).

    Article  PubMed  CAS  Google Scholar 

  309. B. J. Carroll, R. M. Mowbray, and B. Davies, Sequential comparison of L-tryptophan with E.C.T. in severe depression, Lancet I: 967–969.

    Google Scholar 

  310. A. Coppen and R. Noguerra, L-Tryptophan in depression, Lancet I: 1111 (1970).

    Article  Google Scholar 

  311. D. M. Shaw, L-Tryptophan in depression, Lancet I: 1111 (1970).

    Google Scholar 

  312. B. J. Carroll, R. M. Mowbray, and B. Davies, L-Tryptophan in depression, Lancet I: 1228 (1970).

    Article  Google Scholar 

  313. M. A. X. Cocheme and A. D. Broadhurst, L-Tryptophan versus E.C.T. Lancet I: 1392 (1970).

    Article  Google Scholar 

  314. H. M. van Praag and J. Korf, L-Tryptophan in depression, Lancet II: 612 (1970).

    Article  Google Scholar 

  315. B. J. Carroll, R. M. Mowbray, and B. Davies, L-Tryptophan in depression, Lancet II: 776 (1970).

    Article  Google Scholar 

  316. A. Coppen, A. J. Prange, Jr., P. C. Whybrow, R. Noguerra, and J. M. Paez, Methysergide in mania. A controlled trial, Lancet II: 338–340 (1969).

    Article  Google Scholar 

  317. R. R. Fieve, S. R. Platman, and J. L. Fleiss, A clinical trial of methysergide and lithium in mania, Psychopharmacologia 15: 425–429 (1969).

    Article  PubMed  CAS  Google Scholar 

  318. M. S. McCabe, T. Reich, and G. Winokur, Methysergide as a treatment for mania, Amer. J. Psychiat. 127: 354–356 (1970).

    PubMed  CAS  Google Scholar 

  319. L. Haškovec, Methysergide in mania, Lancet II: 902 (1969).

    Article  Google Scholar 

  320. F.J. Kane, Treatment of mania with cinanserine, an antiserotonin agent, Amer. J. Psychiat. 126: 1020–1023 (1970).

    PubMed  Google Scholar 

  321. L. Baer, J. Durell, W. E. Bunney, Jr., B. S. Levy, and P. V. Cardon, Sodium-22 retention and 17-hydroxycorticosteroid excretion in affective disorders: a preliminary report, J. Psychiat. Res. 6: 289–297 (1969).

    Article  PubMed  CAS  Google Scholar 

  322. D. M. Shaw, D. Frizel, F. E. Camps, and S. White, Brain electrolytes in depressive and alcoholic suicides, Brit. J. Psychiat. 115: 69–79 (1969).

    Article  PubMed  CAS  Google Scholar 

  323. D. L. Murphy, F. K. Goodwin, and W. E. Bunney, Jr., Potassium, sodium and aldosterone in manic-depressive patients: changes in relation to clinical state and lithium administration, NIMH Workshop on Recent Advances in the Psychobiology of the Depressive Illnesses, Williamsburg, Va., April 1969.

    Google Scholar 

  324. K. Abe and A. Coppen, Personality and body composition in monozygotic twins with an affective disorder, Brit. J. Psychiat. 115: 777–780 (1969).

    Article  PubMed  CAS  Google Scholar 

  325. B. J. Carroll, L. Stevens, R. A. Pope, and B. Davies, Sodium transfer from plasma to CSF in severe depressive illness, Arch. Gen. Psychiat. 21: 77–81 (1969).

    Article  PubMed  CAS  Google Scholar 

  326. L. Baer, S. Platman, and R. Fieve, Aldosterone-dependent component of lithium metabolism and the effect of lithium on fluid and electrolyte balance, NIMH Workshop on Recent Advances in the Psychology of the Depressive Illnesses, Williamsburg, Va., April 1969.

    Google Scholar 

  327. R. P. Hullin, J. C. Swinscoe, R. McDonald, and G. A. Dransfield, Metabolic balance studies on the effect of lithium salts in manic-depressive psychosis, Brit. J. Psychiat. 114: 1561–1574 (1968).

    Article  PubMed  CAS  Google Scholar 

  328. G. Johnson, M. Maccario, S. Gershon, and J. Korein, The effects of lithium on electroencephalogram, behavior and serum electrolytes, J. Nerv. Ment. Dis. 151: 273–289 (1970).

    Article  PubMed  CAS  Google Scholar 

  329. E. M. Trautner, R. Morris, C. H. Noack, and S. Gershon, The excretion and retention of ingested lithium and its effect on the ionic balance of man, Med. J. Austral. 2: 280 (1955).

    Google Scholar 

  330. S. Gershon and A. Yuwiler, Lithium ion: a specific psychopharmacological approach to the treatment of mania, J. Neuropsychiat. 1: 229–241 (1960).

    PubMed  CAS  Google Scholar 

  331. K. Greenspan, Clinical pharmacology and pending biochemical questions of lithium therapy, Dis. Nerv. Syst. 29: 178 (1968).

    PubMed  CAS  Google Scholar 

  332. K. Greenspan, F. K. Goodwin, W. E. Bunney, Jr., and J. Durell, Lithium ion retention and distribution. Patterns during acute mania and normothymia, Arch. Gen. Psychiat. 19: 664–673 (1968).

    Article  PubMed  CAS  Google Scholar 

  333. K. Greenspan, R. Green, and J. Durell, Retention and distribution patterns of lithium, a pharmacological tool in studying the pathophysiology of manic-depressive psychosis, Amer. J. Psychiat. 125: 512–519 (1968).

    PubMed  CAS  Google Scholar 

  334. S. R. Platman and R. R. Fieve, Biochemical aspects of lithium in affective disorders, Arch. Gen. Psychiat. 19: 659–663 (1968).

    Article  PubMed  CAS  Google Scholar 

  335. S. R. Platman and R. R. Fieve, Lithium retention and excretion, Arch. Gen. Psychiat. 20: 285–289 (1969).

    Article  PubMed  CAS  Google Scholar 

  336. A. Mangoni, V. Andreoli, F. Cabibbe, and V. Mandelli, Body fluids distribution in manic and depressed patients treated with lithium carbonate, Abst. 2nd Intern. Meetg Intern. Soc. Neurochem. Milan, p. 279 (1969).

    Google Scholar 

  337. L. Baer, J. Durell, W. E. Bunney, Jr., B. S. Levy, D. L. Murphy, K. Greenspan, and P. V. Cardon. Sodium balance and distribution in lithium carbonate therapy, Arch. Gen. Psychiat. 22: 40–44 (1970).

    Article  PubMed  CAS  Google Scholar 

  338. P. S. Mueller, G. R. Heninger, and R. K. McDonald, Intravenous glucose tolerance test in depression, Arch. Gen. Psychiat. 21: 470–477 (1969).

    Article  PubMed  CAS  Google Scholar 

  339. P. S. Mueller, G. R. Heninger, and R. K. McDonald, Insulin tolerance test in depression, Arch. Gen. Psychiat. 21: 587–594 (1969).

    Article  PubMed  CAS  Google Scholar 

  340. G. R. Heninger and P. S. Mueller, Carbohydrate metabolism in mania, Arch. Gen. Psychiat. 23: 310–319 (1970).

    Article  PubMed  CAS  Google Scholar 

  341. W. Z. Potter, D. S. Zaharko, and L. V. Beck, Possible role of hydrazine group in hypoglycemia associated with the use of certain monoamine oxidase inhibitors (MAOIs), Diabetes 18: 538–541 (1969).

    PubMed  CAS  Google Scholar 

  342. L. Triner, M. Verosky, J. Papayoanou, and G. G. Nahas, The effect of some monoamine oxidase inhibitors on gluconeogenesis, Life Sci. 8 1: 1281–1290 (1969).

    Article  Google Scholar 

  343. P. D. Ray, R. L. Hanson, and H. A. Lardy, Inhibition by hydrazine of gluconeogenesis in the rat, J. Biol. Chem. 245: 690–696 (1970).

    PubMed  CAS  Google Scholar 

  344. W. E. Bunney, Jr., J. A. Fawcett, J. M. Davis, and S. Gifford, Further evaluation of urinary 17-hydroxycorticosteroids in suicidal patients, Arch. Gen. Psychiat. 21: 138–150 (1969).

    Article  PubMed  Google Scholar 

  345. D. T. Fullerton, F. J. Wenzel, F. N. Lohrenz, and H. Fahs, Crcadian rhythm of adrenal cortical activity in depression. II. A comparison of types in depression, Arch. Gen. Psychiat. 19: 682–688 (1968).

    Article  PubMed  CAS  Google Scholar 

  346. E. J. Sachar, L. Hellman, D. K. Fukushima, and T. F. Gallagher, Cortisol production in depressive illness, Arch. Gen. Psychiat. 23: 289–298 (1970).

    Article  PubMed  CAS  Google Scholar 

  347. J. Mendels, Urinary 17-ketosteroid fractionation in depression: a preliminary report, Brit. J. Psychiat. 115: 581–585 (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Weil-Malherbe, H. (1972). The Biochemistry of Affective Disorders. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7172-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7172-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7174-2

  • Online ISBN: 978-1-4615-7172-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics