Skip to main content

Carrier-Mediated Transport Processes

  • Chapter
Metabolic Turnover in the Nervous System

Abstract

In Chapter 20(1) the movement of solutes across biological membranes is treated in relation to processes which do not, in general, involve a chemical interaction between the permeant and the membrane, and which are thermo-dynamically dissipative in character—i.e., the free energy of the matter under observation decreases during transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Brodsky, A. E. Shamoo, and I. L. Schwartz, Dissipative transport processes, in Handbook of Neuro chemistry (A. Lajtha, ed.). Vol. 5, Plenum Press, New York (1971).

    Google Scholar 

  2. E. A. Guggenheim, Thermodynamics, An Advanced Treatment for Chemists and Physicists, 5th ed. pp. 298–302, North-Holland, Amsterdam (1967).

    Google Scholar 

  3. T. Rosenberg, On accumulation and active transport in biological systems I. Thermodynamic considerations, Acta Chem. Scand. 2:14–33 (1948).

    CAS  Google Scholar 

  4. O. Kedem, Criteria of active transport, in Membrane Transport and Metabolism (A.

    Google Scholar 

  5. Kleinzeller and A. Kotyk, eds.), pp. 87–93, Academic Press, New York (1961).

    Google Scholar 

  6. T. Rosenberg, The concept and definition of active transport, Symp. Soc. Exp. Biol. 8:27–41 (1954).

    CAS  Google Scholar 

  7. P. J. Garrahan and I. M. Glynn, The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J. Physiol. (London) 192:237–256 (1967).

    CAS  Google Scholar 

  8. I. M. Glynn and V. L. Lew, Affinities or apparent affinities of the transport adenosine triphosphatase system, J. Gen. Physiol. 54 (pt. 2):289s–305s (1969); also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 289–305. Little Brown, Boston (1969).

    CAS  Google Scholar 

  9. A. Fick, IV. Ueber diffusion, Poggendorf’s Ann. Phys. Chem. 94:59–86 (1855).

    Google Scholar 

  10. A. Fick, V. On liquid diffusion, Philosoph. Mag. & J. Science (London, Edinburgh, and Dublin) 10:30–39 (1855).

    Google Scholar 

  11. P. G. LeFevre and G. F. McGinniss, Tracer exchange vs net uptake of glucose through human red cell surface, J. Gen. Physiol. 44:87–103 (1960).

    PubMed  CAS  Google Scholar 

  12. T. Rosenberg and W. Wilbrandt, Enzymatic processes in cell membrane penetration, Internat. Rev. Cytol. 1:65–95 (1952).

    CAS  Google Scholar 

  13. E. Heinz, Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell, J. Biol. Chem. 211:781–790 (1954).

    PubMed  CAS  Google Scholar 

  14. J. F. Danielli, Morphological and molecular aspects of active transport, Symp. Soc. Exp. Biol. 8:502–516(1954).

    CAS  Google Scholar 

  15. W. D. Stein, Facilitated diffusion, Recent Progr. Surface Sci. 1:300–337 (1964).

    CAS  Google Scholar 

  16. W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 127–128, Academic Press, New York and London (1967).

    Google Scholar 

  17. R. M. Dowben, General PhysiologyA Molecular Approach, pp. 448–449, Harper & Row, New York (1969).

    Google Scholar 

  18. R. Höber, Über Resorption im Dünndarm, Pflüg. Arch. ges. Physiol. 74:246–271 (1899).

    Google Scholar 

  19. R. Höber, Correlation between the molecular configuration of organic compounds and their active transfer in living cells, Cold Spring Harbor Symp. Quant. Biol. 8:40–50 (1940).

    Google Scholar 

  20. R. Höber, Physical Chemistry of Cells and Tissues, 2nd ed., pp. 615–620, Blakiston, Philadelphia and Toronto (1945).

    Google Scholar 

  21. F. Verzàr, Probleme und Ergebnisse auf dem Gebiete der Darmresorption, Ergebn. Physiol. 32:391–471 (1931).

    Google Scholar 

  22. F. Verzàr, Die Rolle von Diffusion und Schleimhautaktivität bei der Resorption von verschiedenen Zuckern aus dem Darm, Biochem. Z. 276:17–27 (1935).

    Google Scholar 

  23. J. A. Shannon and S. Fisher, The renal tubular reabsorption of glucose in the normal dog, Am. J. Physiol. 122:765–774 (1938).

    CAS  Google Scholar 

  24. J. A. Shannon, The tubular reabsorption of xylose in the normal dog, Am. J. Physiol. 122:775–781 (1938).

    CAS  Google Scholar 

  25. J. A. Shannon, Renal tubular excretion, Physiol. Rev. 19:63–93 (1939).

    Google Scholar 

  26. J. Franck and J. E. Mayer, An osmotic diffusion pump, Arch. Biochem. Biophys. 14:297–313 (1947).

    CAS  Google Scholar 

  27. J. B. Wittenberg, Oxygen transport—a new function proposed for myoglobin, Biol. Bull. (Woods Hole) 117 (abstract):402–403 (1959).

    Google Scholar 

  28. J. B. Wittenberg, The molecular mechanism of hemoglobin-facilitated oxygen diffusion, J. Biol. Chem. 241:104–114 (1966).

    PubMed  CAS  Google Scholar 

  29. P. F. Scholander, Oxygen transport through hemoglobin solutions, Science 131.585–590 (1960).

    PubMed  CAS  Google Scholar 

  30. F. M. Snell, Facilitated transport of oxygen through solutions of hemoglobin, J. Theoret. Biol. 8:469–479 (1965).

    CAS  Google Scholar 

  31. J. Wyman, Facilitated diffusion and the possible role of myoglobin as a transport mechanism, J. Biol. Chem. 241:115–121 (1966).

    PubMed  CAS  Google Scholar 

  32. P. Mitchell, Active transport and ion accumulation, in Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 22, pp. 167–197, Elsevier, Amsterdam (1967).

    Google Scholar 

  33. P. Mitchell, Translocations through natural membranes, Adv. Enzymol. 29:33–87 (1967).

    PubMed  CAS  Google Scholar 

  34. W. J. V. Osterhout and W. M. Stanley, The accumulation of electrolytes. V. Models showing accumulation and a steady state, J. Gen. Physiol. 15:667–689 (1932).

    PubMed  CAS  Google Scholar 

  35. W. J. V. Osterhout, Permeability in large plant cells and in models, Ergebn. Physiol. 35:967–1021 (1933).

    Google Scholar 

  36. W. J. V. Osterhout, How do electrolytes enter cells? Proc. Nat. Acad. Sci. U.S. 21:125–132(1935).

    CAS  Google Scholar 

  37. H. Lundegårdh, Theorie der Ionenaufnahme in lebende Zellen, Naturwissenschaften 23:313–318(1935).

    Google Scholar 

  38. H. Lundegårdh, Investigations as to the absorption and accumulation of inorganic ions, Ann. Agric. Coll. Sweden 8:234–404 (1940).

    Google Scholar 

  39. E. Guensberg, Die Glukose Aufnahme in menschliche rote Blut Körperchen. Inauguraldissertation. Bern, Gerber-Buchdruck, Schwartzenberg (1947).

    Google Scholar 

  40. A. L. Hodgkin, The effect of potassium on the surface membrane of an isolated axon, J. Physiol. (London) 106: 319–340 (1947).

    CAS  Google Scholar 

  41. H. H. Ussing, Interpretation of the exchange of radio-sodium in isolated muscle, Nature (London) 160:262–263 (1947).

    CAS  Google Scholar 

  42. H. H. Ussing, Transport of ions across cellular membranes, Physiol. Rev. 29:127–155 (1949).

    PubMed  CAS  Google Scholar 

  43. H. H. Ussing, Some aspects of the application of tracers in permeability studies, Adv. Enzymol. 13:21–65(1952).

    CAS  Google Scholar 

  44. P. G. LeFevre, Evidence of active transfer of certain non-electrolytes across the human red cell membrane, J. Gen. Physiol. 31:505–527 (1948).

    PubMed  CAS  Google Scholar 

  45. P. G. LeFevre, The evidence for active transport of monosaccharides across the red cell membrane, Symp. Soc. Exp. Biol. 8:118–135 (1954).

    Google Scholar 

  46. P. G. LeFevre and R. I. Davies, Active transport into the human erythrocyte: evidence from comparative kinetics and competition among monosaccharides, J. Gen. Physiol. 34:515–524(1951).

    PubMed  CAS  Google Scholar 

  47. P. G. LeFevre and M. E. LeFevre, The mechanism of glucose transfer into and out of the human red cell, J. Gen. Physiol. 35:891–906 (1952).

    PubMed  CAS  Google Scholar 

  48. W. F. Widdas, Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer, J. Physiol. (London) 118:23–39(1952).

    CAS  Google Scholar 

  49. W. F. Widdas, Comment on Professor Wilbrandt’s and Dr. LeFevre’s papers, Symp. Soc. Exp. Biol. 8:163–164 (1954).

    CAS  Google Scholar 

  50. W. F. Widdas, Facilitated transfer of hexoses across the human erythrocyte membrane, J. Physiol (London) 125:163–180 (1954).

    CAS  Google Scholar 

  51. W. Wilbrandt, Secretion and transport of non-electrolytes, Symp. Soc. Exp. Biol. 8:136–162 (1954).

    Google Scholar 

  52. C. S. Patlak, Contributions to the theory of active transport, Bull. Math. Biophys. 18:271–315 (1956).

    Google Scholar 

  53. C. S. Patlak, Contributions to the theory of active transport: II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure, Bull. Math. Biophys. 19:209–235 (1957).

    Google Scholar 

  54. W. D. Stein, Intra-protein interactions across a fluid membrane as a model for biological transport, J. Gen. Physiol. 54 (pt. 2):81s–90s (1969); also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 81–90, Little Brown, Boston (1969).

    CAS  Google Scholar 

  55. J. D. Robertson, New observations on the ultrastructure of the membranes of frog peripheral nerve fibers, J. Biophys. Biochem. Cytol. 3:1043–1047 (1957).

    PubMed  CAS  Google Scholar 

  56. J. D. Robertson, Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions, J. Biophys. Biochem. Cytol. 4:349–364 (1958).

    PubMed  CAS  Google Scholar 

  57. J. D. Robertson, The ultrastructure of cell membranes and their derivatives, Biochem. Soc. Symp. (Cambridge, England) 16:3–43 (1959).

    CAS  Google Scholar 

  58. J. D. Robertson, The molecular structure and contact relationships of cell membranes,

    Google Scholar 

  59. Progr. Biophys. Biophys. Chem. 10:343–418 (1960).

    Google Scholar 

  60. J. F. Danielli and H. Davson, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495–508 (1935).

    CAS  Google Scholar 

  61. J. F. Danielli, The present position in the field of facilitated diffusion and selective active transport, in Recent Developments in Cell Physiology, Proceedings of the Seventh Symposium of the Colston Research Society (J. A. Kitching, ed.), pp. 1–14, Butterworths, London; Academic Press, New York (1954).

    Google Scholar 

  62. D. E. Green, An introduction to membrane biochemistry, Israel J. Med. Sci. 1:1187–1200 (1965).

    CAS  Google Scholar 

  63. D. E. Green and J. F. Perdue, Membranes as expressions of repeating units, Proc. Nat. Acad. Sci. U.S. 55:1295–1302 (1966).

    CAS  Google Scholar 

  64. G. Vanderkooi and D. E. Green, Biological membrane structure, I. The protein crystal model for membranes, Proc. Nat. Acad. Sci. U.S. 66:615–621 (1970).

    CAS  Google Scholar 

  65. G. Vanderkooi and M. Sundaralingam, Biological membrane structure, II. A detailed model for the retinal rod outer segment membrane, Proc. Nat. Acad. Sci. U.S. 67:233–238 (1970).

    CAS  Google Scholar 

  66. S. Roseman, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen.Physiol. 54 (pt. 2):138s–184s (1969); also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 138–184, Little Brown, Boston (1969).

    CAS  Google Scholar 

  67. P. Mitchell and J. Moyle, Group-translocation: a consequence of enzyme-catalyzed group-transfer, Nature (London) 182:372–373 (1958).

    CAS  Google Scholar 

  68. P. Mitchell, Molecule, group and electron translocation through natural membranes, Biochem. Soc. Symp. (Cambridge, England) 22:142–169 (1962).

    Google Scholar 

  69. B. C. Pressman, Ionophorous antibiotics as models for biological transport, Fed. Proc. 27:1283–1288(1968).

    PubMed  CAS  Google Scholar 

  70. B. C. Pressman, Mechanism of action of transport-mediating antibiotics, Ann. N.Y. Acad. Sci. 147:829–841 (1969).

    PubMed  CAS  Google Scholar 

  71. B. C. Pressman, Control of mitochondrial substrate metabolism by regulation of cation transport, FEBS Symp. 17:315–333 (1969).

    Google Scholar 

  72. B. C. Pressman and D. H. Haynes, Ionophorous agents as mobile ion carriers, in The Molecular Basis of Membrane Function (D. C. Tosteson, ed.), pp. 221–246, Prentice-Hall, Englewood Cliffs, N.J. (1969).

    Google Scholar 

  73. S. Ciani, G. Eisenman, and G. Szabo, A theory for the effects of neutral carriers such as the macrotetralide actin antibiotics on the electrical properties of bilayer membranes, J. Memb.Biol. 1:1–36(1969).

    CAS  Google Scholar 

  74. G. Eisenman, S. Ciani, and G. Szabo, The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents, J. Memb. Biol. 1:294–345(1969).

    Google Scholar 

  75. G. Szabo, G. Eisenman, and S. Ciani, The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, J. Memb. Biol. 1:346–382 (1969).

    Google Scholar 

  76. H. H. Ussing, The distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19:43–56 (1949).

    CAS  Google Scholar 

  77. A. K. Solomon, The kinetics of biological processes. Special problems connected with the use of tracers, Adv. Biol. Med. Phys. 3:65–97 (1953).

    PubMed  CAS  Google Scholar 

  78. C. W. Sheppard, Basic Principles of the Tracer Method, John Wiley, New York (1962).

    Google Scholar 

  79. T. Rosenberg and W. Wilbrandt, The kinetics of membrane transports involving chemical reactions, Exp. Cell Res. 9:49–67 (1955).

    PubMed  CAS  Google Scholar 

  80. W. Wilbrandt, S. Frei and T. Rosenberg, The kinetics of glucose transport through the human red cell membrane, Exp. Cell. Res. 11:59–66 (1956).

    PubMed  CAS  Google Scholar 

  81. F. Bowyer, The kinetics of penetration of nonelectrolytes into the mammalian erythrocyte, Internat. Rev. Cytol. 6:469–511 (1957).

    CAS  Google Scholar 

  82. W. Wilbrandt and T. Rosenberg, The concept of carrier transport and its corollaries in pharmacology, Pharmacol. Rev. 13:109–183 (1961).

    PubMed  CAS  Google Scholar 

  83. T. Rosenberg, Membrane transport of sugars. A survey of kinetical and chemical approaches, Path. Biol. 9:795–802 (1961).

    CAS  Google Scholar 

  84. G. A. Vidaver, Inhibition of parallel flux and augmentation of counter flux shown by transport models not involving a mobile carrier, J. Theoret. Biol. 10:301–306 (1966).

    CAS  Google Scholar 

  85. H. Lineweaver and D. Burk, The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56:658–666 (1934).

    CAS  Google Scholar 

  86. C. S. Hanes, Studies on plant amylases. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochem. J. (London) 26:1406–1421 (1932).

    CAS  Google Scholar 

  87. K. Ahmed and P. G. Scholefield, Biochemical studies on l-aminocyclopentane carboxylic acid, Canad. J. Biochem. Physiol. 40:1101–1110 (1962):

    PubMed  CAS  Google Scholar 

  88. M. Dixon, The determination of enzyme inhibitor constants, Biochem. J. (London) 55:170–171 (1953).

    CAS  Google Scholar 

  89. J. A. Jacquez, The kinetics of carrier-mediated active transport of amino acids, Proc. Nat. Acad. Sci. U.S. 47:153–163 (1961).

    CAS  Google Scholar 

  90. T. Rosenberg and W. Wilbrandt, Carrier transport uphill. I. General, J. Theoret. Biol. 5:288–305 (1963).

    CAS  Google Scholar 

  91. D. M. Miller, The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes, Biophys. J. 5:407–415 (1965).

    PubMed  CAS  Google Scholar 

  92. D. M. Miller, The kinetics of selective biological transport. II. Equations for induced uphill transport of sugars in human erythrocytes, Biophys. J. 5:417–423 (1965).

    PubMed  CAS  Google Scholar 

  93. T. Rosenberg and W. Wilbrandt, Uphill transport induced by counterflow, J. Gen. Physiol. 41:289–296(1957).

    PubMed  CAS  Google Scholar 

  94. H. G. Britton, Permeability of the human red cell to labelled glucose, J. Physiol. (London) 170:1–20(1964).

    CAS  Google Scholar 

  95. D. M. Regen and H. E. Morgan, Studies of the glucose-transport system in the rabbit erythrocyte, Biochim. Biophys. Acta 79:151–166 (1964).

    PubMed  CAS  Google Scholar 

  96. M. Levine, D. L. Oxender, and W. D. Stein, The substrate-facilitated transport of the glucose carrier across the human erythrocyte membrane, Biochim. Biophys. Acta 109:151–163 (1965).

    PubMed  CAS  Google Scholar 

  97. M. Levine and W. D. Stein, The kinetic parameters of the monosaccharide transfer system of the human erythrocyte, Biochim. Biophys. Acta 127:179–193 (1966).

    PubMed  CAS  Google Scholar 

  98. W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 152–157 and 162–174, Academic Press, New York and London (1967).

    Google Scholar 

  99. H. R. Wyssbrod, Kinetics of a carrier system displaying trans-effects, (in preparation).

    Google Scholar 

  100. E. Heinz and P. M. Walsh, Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells, J. Biol. Chem. 233:1488–1493 (1958).

    PubMed  CAS  Google Scholar 

  101. R. M. Johnstone and P. G. Scholefield, The influence of amino acids and antimetabolites on glycine retention by Ehrlich ascites carcinoma cells, Cancer Res. 19:1140–1149 (1959).

    PubMed  CAS  Google Scholar 

  102. J. A. Jacquez, Transport and exchange diffusion of L-tryptophan in Ehrlich cells, Am. J. Physiol. 200:1063–1068 (1961).

    PubMed  CAS  Google Scholar 

  103. A. Lajtha and P. Mela, The brain barrier system—I. The exchange of free amino acids between plasma and brain, J. Neurochem. 7:210–217 (1961).

    CAS  Google Scholar 

  104. R. M. Johnstone and J. H. Quastel, Effects of lipotropic agents on exchange diffusion in Ehrlich ascites carcinoma cells, Biochim. Biophys. Acta 46:527–532 (1961).

    PubMed  CAS  Google Scholar 

  105. R. M. Johnstone and P. G. Scholefield, Factors controlling the uptake and retention of methionine and ethionine by Ehrlich ascites carcinoma cells, J. Biol. Chem. 236:1419–1424 (1961).

    PubMed  CAS  Google Scholar 

  106. A. Lajtha and J. Toth, The brain barrier system—V. Stereospecificity of amino acid uptake, exchange and efflux, J. Neurochem. 10:909–920 (1963).

    PubMed  CAS  Google Scholar 

  107. D. L. Oxender and H. N. Christensen, Evidence for two types of mediation of neutral amino-acid transport in Ehrlich cells, Nature (London) 197:765–767 (1963).

    CAS  Google Scholar 

  108. J. A. Jacquez and J. H. Sherman, The effect of metabolic inhibitors on transport and exchange of amino acids in Ehrlich ascites cells, Biochim. Biophys. Acta 109:128–141 (1965).

    PubMed  CAS  Google Scholar 

  109. A. Lajtha, Transport as control mechanism of cerebral metabolite levels, in Brain Barrier Systems (Progress in Brain Research, Vol. 29), (A. Lajtha and D. H. Ford, eds.), pp. 201–218, Elsevier, Amsterdam (1968).

    Google Scholar 

  110. L. Battistin and A. Lajtha, Regional distribution and movement of amino acids in the brain, J. Neurol. Sci. 10:313–322 (1970).

    PubMed  CAS  Google Scholar 

  111. R. Blasberg, G. Levi, and A. Lajtha, A comparison of inhibition of steady state, net transport, and exchange fluxes of amino acids in brain slices, Biochim. Biophys. Acta 203:464–483(1970).

    PubMed  CAS  Google Scholar 

  112. D. E. Gentile, A. E. Shamoo, H. R. Wyssbrod, and W. A. Brodsky, Counterflow of sodium across short-circuited acid-killed turtle bladder, Am. J. Physiol. 219:1192–1199 (1970).

    PubMed  CAS  Google Scholar 

  113. W. Gross, K. Ring, and E. Heinz, Positive feedback regulation of amino acid transport in Streptomyces hydrogenans, Arch. Biochem. Biophys. 137:253–261 (1970).

    CAS  Google Scholar 

  114. C. M. Paine and E. Heinz, The structural specificity of the glycine transport system of Ehrlich carcinoma cells, J. Biol. Chem. 235:1080–1085 (1960).

    PubMed  CAS  Google Scholar 

  115. K. Ring and E. Heinz, Active amino acid transport in Streptomyces hydrogenans I. Kinetics of uptake of α-aminoisobutyric acid, Biochem. Z. 344:446–461 (1966).

    CAS  Google Scholar 

  116. G. A. Vidaver and S. L. Shepherd, Transport of glycine by hemolyzed and restored pigeon red blood cells, J. Biol. Chem. 243:6140–6150 (1968).

    PubMed  CAS  Google Scholar 

  117. M. L. Belkhode and P. G. Scholefield, Interactions between amino acids during transport and exchange diffusion in Novikoff and Ehrlich ascites tumor cells, Biochim. Biophys. Acta 173:290–301 (1969).

    PubMed  CAS  Google Scholar 

  118. K. Ring, W. Gross, and E. Heinz, Negative feedback regulation of amino acid transport in Streptomyces hydrogenans, Arch. Biochem. Biophys. 137:243–252 (1970).

    PubMed  CAS  Google Scholar 

  119. J. T.-F. Wong, The possible role of polyvalent carriers in cellular transports, Biochim. Biophys. Acta 94:102–113 (1965).

    PubMed  CAS  Google Scholar 

  120. W. D. Stein, Spontaneous and enzyme-induced dimer formation and its role in membrane permeability. II. The mechanism of movement of glycerol across the human erythrocyte membrane, Biochim. Biophys. Acta 59:47–65 (1962).

    PubMed  CAS  Google Scholar 

  121. W. D. Stein, Spontaneous and enzyme-induced dimer formation and its role in membrane permeability. III. The mechanism of movement of glucose across the human erythrocyte membrane, Biochim. Biophys. Acta 59:66–77 (1962).

    PubMed  CAS  Google Scholar 

  122. W. Wilbrandt and A. Kotyk, Transport of sugar mono- and di-complexes in human erythrocytes, Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 249:279–287 (1964).

    CAS  Google Scholar 

  123. H. G. Britton, Fluxes in passive, monovalent and polyvalent carrier systems, J. Theoret. Biol. 10:28–52(1965).

    Google Scholar 

  124. H. R. Wyssbrod, Kinetics of a carrier system displaying cis-stimulation, (in preparation).

    Google Scholar 

  125. D. E. Atkinson, J. A. Hathaway, and E. C. Smith, Kinetics of regulatory enzymes. Kinetic order of the yeast diphosphopyridine nucleotide isocitrate dehydrogenase reaction and a model for the reaction, J. Biol. Chem. 240:2682–2690 (1965).

    PubMed  CAS  Google Scholar 

  126. W. R. Lieb and W. D. Stein, Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane, Biophys. J. 10:585–609 (1970).

    PubMed  CAS  Google Scholar 

  127. J. Monod, J. Wyman, and J.-P. Changeux, On the nature of allosteric transitions: a plausible model, J. Mol. Biol. 12:88–118 (1965).

    PubMed  CAS  Google Scholar 

  128. D. E. Koshland, Jr., G. Némethy, and D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5:365–385 (1966).

    PubMed  CAS  Google Scholar 

  129. L. Pauling, The oxygen equilibrium of hemoglobin and its structural interpretation, Proc. Nat. Acad. Sci. U.S. 21:186–191 (1935).

    CAS  Google Scholar 

  130. J.-P. Changeux, J. Thiéry, Y. Tung, and C. Kittel, On the cooperativity of biological membranes, Proc. Nat. Acad. Sci. U.S. 57:335–341 (1967).

    CAS  Google Scholar 

  131. J.-P. Changeux and J. Thiéry, On the excitability and cooperativity of biological membranes, in Regulatory Functions of Biological Membranes (J. Järnefelt, ed.), BBA Library, Vol. 11, pp. 116–138, Elsevier, Amsterdam (1968).

    Google Scholar 

  132. J. A. Jacquez, Carrier-amino acid stoichiometry in amino acid transport in Ehrlich ascites cells, Biochim. Biophys. Acta 71:15–33 (1963).

    PubMed  CAS  Google Scholar 

  133. D. L. Oxender and H. N. Christensen, Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell, J. Biol. Chem. 238:3686–3699 (1963).

    PubMed  CAS  Google Scholar 

  134. G. Guroff, G. R. Fanning, and M. A. Chirigos, Stimulation of aromatic amino acid transport by p-fluorophenylalanine in the Sarcoma 37 cell, J. Cell. Comp. Physiol. 63:323–331 (1964).

    CAS  Google Scholar 

  135. J. A. Jacquez, Competitive stimulation: further evidence for two carriers in the transport of neutral amino acids, Biochim. Biophys. Acta 135:751–755 (1967).

    PubMed  CAS  Google Scholar 

  136. J. R. Sachs and L. G. Welt, The concentration dependence of active potassium transport in the human red blood cell, J. Clin. Invest. 46:65–76 (1967).

    PubMed  CAS  Google Scholar 

  137. N. Magaña-Schwencke and J. Schwencke, A proline transport system in Saccharomyces chevalieri, Biochim. Biophys. Acta 173:313–323 (1969).

    PubMed  Google Scholar 

  138. B. G. Munck and S. G. Schultz, Interactions between leucine and lysine transport in rabbit ileum, Biochim. Biophys. Acta 183:182–193 (1969).

    PubMed  CAS  Google Scholar 

  139. F. Piccoli and A. Lajtha, Some aspects of uptake of non-metabolites in slices of mouse brain, Biochim. Biophys. Acta 225:356–369 (1971).

    PubMed  CAS  Google Scholar 

  140. H. R. Wyssbrod, The effect of the electric field upon unidirectional fluxes of ions across membranes, (in preparation).

    Google Scholar 

  141. M. Planck, Über die Potentialdifferenz zwischen verdünnten Lösungen binärer Elektrolyte, Ann. Phys. Chem. N.F. 40:561–576 (1890).

    Google Scholar 

  142. W. Nernst, Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen, Z. Physik. Chem. 47:52–55(1904).

    CAS  Google Scholar 

  143. W. Nernst, Zur Theorie des elektrischen Reizes, Pflüg. Arch. ges. Physiol. 122:275–314 (1908).

    Google Scholar 

  144. D. E. Goldman, Potential, impedance, and rectification in membranes, J. Gen. Physiol. 27:37–60(1943).

    PubMed  CAS  Google Scholar 

  145. H. H. Ussing and K. Zerahn, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, Acta Physiol. Scand. 23:110–127 (1951).

    PubMed  CAS  Google Scholar 

  146. F. G. Donnan, Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch-chemischen Physiologie. Z. Elektrochem. 17:572–581 (1911).

    CAS  Google Scholar 

  147. P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature (London) 191:144–148 (1961).

    CAS  Google Scholar 

  148. A. K. Solomon, The permeability of the human erythrocyte to sodium and potassium, J. Gen. Physiol 36:57–110 (1952).

    PubMed  CAS  Google Scholar 

  149. T. I. Shaw, Sodium and potassium movements in red cells, Ph.D. Thesis. Cambridge University, England (1954).

    Google Scholar 

  150. P. C. Caldwell, Factors governing movement and distribution of inorganic ions in nerve and muscle, Physiol. Rev. 48:1–64 (1968).

    PubMed  CAS  Google Scholar 

  151. H. N. Christensen, T. R. Riggs, and N. E. Ray, Concentrative uptake of amino acids by erythrocytes in vitro, J. Biol. Chem. 194:41–51 (1952).

    PubMed  CAS  Google Scholar 

  152. G. A. Vidaver, Transport of glycine by pigeon red cells, Biochemistry 3:662–667 (1964).

    PubMed  CAS  Google Scholar 

  153. G. A. Vidaver, Glycine transport by hemolyzed and restored pigeon red cells, Biochemistry 3:795–799(1964).

    PubMed  CAS  Google Scholar 

  154. G. A. Vidaver, Some tests of the hypothesis that the sodium-ion gradient furnishes the energy for glycine-active transport by pigeon red cells, Biochemistry 3:803–808 (1964).

    PubMed  CAS  Google Scholar 

  155. H. N. Christensen, T. R. Riggs, H. Fischer, and I. M. Palatine, Amino acid concentration by a free cell neoplasm: Relations among amino acids, J. Biol. Chem. 198:1–15 (1952).

    PubMed  CAS  Google Scholar 

  156. H. N. Christensen, T. R. Riggs, H. Fischer, and I. M. Palatine, Intense concentration of α,γ-diaminobutyric acid by cells, J. Biol. Chem. 198:17–22 (1952).

    PubMed  CAS  Google Scholar 

  157. T. R. Riggs, L. M. Walker, and H. N. Christensen, Potassium migration and amino acid transport, J. Biol. Chem. 233:1479–1484 (1958).

    PubMed  CAS  Google Scholar 

  158. H. Kromphardt, H. Grobecker, K. Ring, and E. Heinz, Über den Einfluss von Alkali-Ionen auf den Glycintransport in Ehrlich-Ascites-Tumorzellen, Biochim. Biophys. Acta 74:549–551 (1963).

    PubMed  CAS  Google Scholar 

  159. K. P. Wheeler, Y. Inui, P. F. Hollenberg, E. Eavenson, and H. N. Christensen, Relation of amino acid transport to sodium-ion concentration, Biochim. Biophys. Acta 109:620–622 (1965).

    PubMed  CAS  Google Scholar 

  160. T. Z. Czáky and M. Thale, Effect of ionic environment on intestinal sugar transport, J. Physiol. (London) 151:59–65 (1960).

    Google Scholar 

  161. T. Z. Czáky and L. Zollicoffer, Ionic effect on intestinal transport of glucose in the rat, Am. J. Physiol. 198:1056–1058 (1960).

    Google Scholar 

  162. T. Z. Czáky, H. G. Hartzog III, and G. W. Fernald, Effect of digitalis on active intestinal sugar transport, Am. J. Physiol. 200:459–460 (1961).

    Google Scholar 

  163. T. Z. Czáky, Significance of sodium ions in active intestinal transport of nonelectrolytes, Am. J. Physiol. 201:999–1001 (1961).

    Google Scholar 

  164. R. K. Crane, D. Miller, and I. Bihler, The restrictions on possible mechanisms of intestinal active transport of sugars, in Membrane Transport and Metabolism (A. Kleinzeller and A. Kotyk, eds.), pp. 439–449, Academic Press, New York (1961).

    Google Scholar 

  165. I. Bihler and R. K. Crane, Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine, Biochim. Biophys. Acta 59:78–93 (1962).

    PubMed  CAS  Google Scholar 

  166. I. Bihler, K. A. Hawkins, and R. K. Crane, Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+-dependent entrance of sugars into intestinal tissue under anaerobic conditions, in vitro, Biochim. Biophys. Acta 59:94–102(1962).

    PubMed  CAS  Google Scholar 

  167. S. G. Schultz and R. Zalusky, Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport, J. Gen. Physiol. 47:1043–1059 (1964).

    PubMed  CAS  Google Scholar 

  168. S. G. Schultz and R. Zalusky, Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes, J. Gen. Physiol. 47:567–584 (1964).

    PubMed  CAS  Google Scholar 

  169. R. K. Crane, Na+-dependent transport in the intestine and other animal tissues, Fed. Proc. 24:1000–1006(1965).

    PubMed  CAS  Google Scholar 

  170. R. K. Crane, G. Forstner, and A. Eichholz, Studies on the mechanism of the intestinal absorption of sugars. X. An effect of Na+ concentration on the apparent Michaelis constants for intestinal sugar transport, in vitro, Biochim. Biophys. Acta 109:467–477 (1965).

    PubMed  CAS  Google Scholar 

  171. W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 192–206, Academic Press, New York and London (1967).

    Google Scholar 

  172. E. E. Crane and R. E. Davies, Chemical energy relations in gastric mucosa, Biochem. J. (London)43:xlii(1948).

    Google Scholar 

  173. E. E. Crane and R. E. Davies, Electric energy relations in gastric mucosa, Biochem. J. (London) 43: xlii-xliii (1948).

    Google Scholar 

  174. E. E. Crane and R. E. Davies, Chemical and electrical energy relations for the stomach, Biochem. J. (London) 49:169–175 (1951).

    CAS  Google Scholar 

  175. E. E. Crane, R. E. Davies, and N. M. Longmuir, Relations between hydrochloric acid secretion and electrical phenomena in frog gastric mucosa, Biochem. J. (London) 43:321–336 (1948).

    CAS  Google Scholar 

  176. E. E. Crane, R. E. Davies, and N. M. Longmuir, The effect of electrical current on HCl secretion by isolated frog gastric mucosa, Biochem. J. (London) 43:336–342 (1948).

    CAS  Google Scholar 

  177. R. E. Davies and A. G. Ogston, On the mechanism of secretion of ions by gastric mucosa and by other tissues, Biochem. J. (London) 46:324–333 (1950).

    CAS  Google Scholar 

  178. R. N. Robertson and M. J. Wilkins, Studies in the metabolism of plant cells, VII. The quantitative relation between salt accumulation and salt respiration, Austr. J. Sci. Res. Ser. B. 1:17–37(1948).

    CAS  Google Scholar 

  179. R. N. Robertson and M. Wilkins, Quantitative relation between salt accumulation and salt respiration in plant cells, Nature (London) 161:101 (1948).

    CAS  Google Scholar 

  180. E. J. Conway and J. G. Brady, Source of hydrogen ions in gastric juice, Nature (London) 162:456–457(1948).

    CAS  Google Scholar 

  181. E. J. Conway, The biological performance of osmotic work. A redox pump, Science 113:270–273(1951).

    PubMed  CAS  Google Scholar 

  182. E. J. Conway, The Biochemistry of Gastric Acid Secretion, C. C. Thomas, Springfield, Ill. (1952).

    Google Scholar 

  183. E. J. Conway, A redox pump for the biological performance of osmotic work, and its relation to the kinetics of free ion diffusion across membranes, Internat. Rev. Cytol. 2:419–445(1953).

    CAS  Google Scholar 

  184. E. J. Conway, Some aspects of ion transport through membranes, Symp. Soc. Exp. Biol. 8:297–324(1954).

    CAS  Google Scholar 

  185. M. H. Jacobs, The influence of ammonium salts on cell reaction, J. Gen. Physiol. 5:181–188 (1922).

    PubMed  CAS  Google Scholar 

  186. M. H. Jacobs, The exchange of material between the erythrocyte and its surroundings, Harvey Lectures 22:146–164 (1927).

    Google Scholar 

  187. M. H. Jacobs, Some aspects of cell permeability to weak electrolytes, Cold Spring Harbor Symp. Quant. Biol. 8:30–39 (1940).

    CAS  Google Scholar 

  188. W. J. V. Osterhout, Is living protoplasm permeable to ions? J. Gen. Physiol. 8:131–146 (1925).

    PubMed  CAS  Google Scholar 

  189. J. Orloffand R. W. Berliner, Relationship between urine pH and weak electrolyte excretion in the dog, Fed. Proc. 13 (abstract): 107 (1954).

    Google Scholar 

  190. J. Orloffand, R. W. Berliner, The mechanism of the excretion of ammonia in the dog, J. Clin. Invest, 35:223–235(1956).

    Google Scholar 

  191. I. L. Schwartz, N. A. Thorn, J. H. Thaysen, and A. R. Feinstein, pH and p-aminohippurate in human sweat, Fed. Proc. 14(abstract): 135 (1955).

    Google Scholar 

  192. I. L. Schwartz, Extrarenal regulation with special reference to the sweat glands, in Mineral Metabolism, An Advanced Treatise (C. L. Comar and F. Bronner, eds.), Vol. I, Part A, Chap. 10, pp. 337–386, Academic Press, New York (1960).

    Google Scholar 

  193. G. Gardos, Accumulation of K+ ions in human blood cells, Acta Physiol. Acad. Sci. Hung. 6:191–199(1954).

    CAS  Google Scholar 

  194. P. G. LeFevre, Sugar transport in the red blood cell: Structure-activity relationships in substrates and antagonists, Pharmacol. Rev. 13:39–70 (1961).

    PubMed  CAS  Google Scholar 

  195. R. D. Keynes, The energy source for active transport in nerve and muscle, in Membrane Transport and Metabolism (A. Kleinzeller and A. Kotyk, eds.), pp. 131–139, Academic Press, New York (1961).

    Google Scholar 

  196. A. Martonosi and R. Feretos, Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake, J. Biol. Chem. 239:659–668 (1964).

    PubMed  CAS  Google Scholar 

  197. H. N. Christensen, Methods for distinguishing amino acid transport systems of a given cell or tissue, Fed. Proc. 25:850–853 (1966).

    PubMed  CAS  Google Scholar 

  198. R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Binding proteins from animals with possible transport function, J. Gen. Physiol. 54 (pt.2): 114s–134s (1969);

    CAS  Google Scholar 

  199. R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Binding proteins from animals with possible transport function, also in Membrane Proteins, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 114–134, Little, Brown, Boston (1969).

    Google Scholar 

  200. S. Uesugi, A. Kahlenberg, F. Medzihradsky, and L. E. Hokin, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. IV. Properties of a Lubrol-solubilized beef brain microsomal enzyme, Arch. Biochem. Biophys. 130:156–163 (1969).

    PubMed  CAS  Google Scholar 

  201. H. N. Christensen and A. B. Hastings, Phosphatides and inorganic salts, J. Biol. Chem. 136:387–398(1940).

    CAS  Google Scholar 

  202. A. K. Solomon, F. Lionetti, and P. F. Curran, Possible cation-carrier substances in blood, Nature (London) 178:582–583 (1956).

    CAS  Google Scholar 

  203. L. E. Hokin and M. R. Hokin, Phosphatidic acid metabolism and active transport of sodium, Fed. Proc. 22:8–18 (1963).

    PubMed  CAS  Google Scholar 

  204. L. E. Hokin, On the molecular characterization of the sodium-potassium transport adenosine triphosphatase, J. Gen. Physiol. 54 (pt. 2):327s–342s (1969);

    CAS  Google Scholar 

  205. L. E. Hokin, On the molecular characterization of the sodium-potassium transport adenosine triphosphatase, also in Membrane Protein, Proceedings of a Symposium sponsored by the New York Heart Association, pp. 327–342 Little, Brown, Boston (1969).

    Google Scholar 

  206. F. Bowyer, and W. F. Widdas, The action of inhibitors on the facilitated hexose transfer system in erythrocytes, J. Physiol. (London) 141:219–232 (1958).

    CAS  Google Scholar 

  207. W. D. Stein, N-terminal histidine at the active centre of a permeability mechanism, Nature (London) 181:1662–1663 (1958).

    CAS  Google Scholar 

  208. M. E. Koshland, F. Englberger, and D. E. Koshland, Jr., A general method for the labeling of the active site of antibodies and enzymes, Proc. Nat. Acad. Sci. U.S. 45:1470–1475 (1959).

    CAS  Google Scholar 

  209. H. Bobinski and W. D. Stein, Isolation of a glucose-binding component from human erythrocyte membranes, Nature (London) 211:1366–1368 (1966).

    CAS  Google Scholar 

  210. C. F. Fox and E. P. Kennedy, Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli, Proc. Nat. Acad. Sci. U.S. 54:891–899(1965).

    CAS  Google Scholar 

  211. J. VanSteveninck, R. I. Weed, and A. Rothstein, Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport, J. Gen. Physiol. 48:617–632 (1965).

    PubMed  CAS  Google Scholar 

  212. W. D. Stein, The Movement of Molecules across Cell Membranes, pp. 289–295, Academic Press, New York and London (1967).

    Google Scholar 

  213. P. G. LeFevre, K. I. Habich, H. S. Hess, and M. R. Hudson, Phospholipid-sugar complexes in relation to cell membrane monosaccharide transport, Science 143:955–957 (1964).

    PubMed  CAS  Google Scholar 

  214. W. Gross and K. Ring, Effect of chloramphenicol on active amino acid transport, FEBS Letters 4:319–322 (1969).

    PubMed  CAS  Google Scholar 

  215. L. J. Elsas and L. E. Rosenberg, Inhibition of amino acid transport in rat kidney cortex by puromycin, Proc. Nat. Acad. Sci. U.S. 57:371–378 (1967).

    CAS  Google Scholar 

  216. I. S. Edelman, R. Bogoroch, and G. A. Porter, On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis, Proc. Nat. Acad. Sci. U.S. 50:1169–1177(1963).

    CAS  Google Scholar 

  217. G. A. Porter, R. Bogoroch, and I. S. Edelman, On the mechanism of action of aldosterone on sodium transport: The role of RNA synthesis, Proc. Nat. Acad. Sci. U.S. 52:1326–1333 (1964).

    CAS  Google Scholar 

  218. D. D. Fanestil and I. S. Edelman, Characteristics of the renal nuclear receptors for aldosterone, Proc. Nat. Acad. Sci. U.S. 56:872–879 (1966).

    CAS  Google Scholar 

  219. T. S. Herman, G. M. Fimognari, and I. S. Edelman, Studies on renal aldosterone-binding proteins, J. Biol. Chem. 243:3849–3856 (1968).

    PubMed  CAS  Google Scholar 

  220. G. M. Fimognari, D. D. Fanestil, and I. S. Edelman, Induction of RNA and protein synthesis in the action of aldosterone in the rat, Am. J. Physiol. 213:954–962 (1967).

    PubMed  CAS  Google Scholar 

  221. S. M. Sabesin and K. J. Isselbacher, Protein synthesis inhibition: Mechanism for the production of impaired fat absorption, Science 147:1149–1151 (1965).

    PubMed  CAS  Google Scholar 

  222. K. J. Isselbacher, Biochemical aspects of lipid malabsorption, Fed. Proc. 26:1420–1425 (1967).

    PubMed  CAS  Google Scholar 

  223. M. Lubin and H. L. Ennis, On the role of intracellular potassium in protein synthesis, Biochim. Biophys. Acta 80:614–631 (1964).

    PubMed  CAS  Google Scholar 

  224. M. Lubin, Intracellular potassium and macromolecular synthesis in mammalian cells, Nature (London) 213:451–453 (1967).

    CAS  Google Scholar 

  225. O. Jardetzky, Simple allosteric model for membrane pumps, Nature (London) 211:969–970(1966).

    CAS  Google Scholar 

  226. T. L. Hill, A proposed common allosteric mechanism for active transport, muscle contraction, and ribosomal translocation, Proc. Nat. Acad. Sci. U.S. 64:267–274 (1969).

    CAS  Google Scholar 

  227. W. D. Stein and J. F. Danielli, Structure and function in red cell permeability, Disc. Faraday Soc. 21:238–251 (1956).

    Google Scholar 

  228. M. Burger, L. Hejmová, and A. Kleinzeller, Transport of some mono- and di-saccharides into yeast cells, Biochem. J. (London) 71:233–242 (1959).

    CAS  Google Scholar 

  229. V. P. Cirillo, The mechanism of sugar transport into the yeast cell, Trans. N.Y. Acad. Sci. 23:725–734(1961).

    Google Scholar 

  230. D. Miller and R. K. Crane, The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis, Biochim. Biophys. Acta 52:281–293 (1961).

    PubMed  CAS  Google Scholar 

  231. R. K. Crane, in Structural and functional organization of an epithelial cell brush border, in Intracellular Transport (K. B. Warren, ed.), pp. 97–99, Academic Press, New York (1966).

    Google Scholar 

  232. A. M. Ugolev, N. N. Jesuitova, and P. deLaey, Localization of invertase activity in small intestinal cells, Nature (London) 203:879–880 (1964).

    CAS  Google Scholar 

  233. G. A. Marzluf and R. L. Metzenberg, Studies on the functional significance of the transmembrane location of invertase in Neurospora crassa, Arch. Biochem. Biophys. 120:487–496(1967).

    Google Scholar 

  234. J. T. Edsall and J. Wyman, Biophysical Chemistry, Vol. I, pp. 594–595, Academic Press, New York (1958).

    Google Scholar 

  235. U. Westphal, Assay and properties of corticosteroid-binding globulin and other steroid-binding serum proteins, in Methods in Enzymology (R. B. Clayton, ed.) Vol. 15, pp. 761–796(1969).

    Google Scholar 

  236. C. Scatchard, The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci. 51:660–672(1949).

    CAS  Google Scholar 

  237. M. C. Meyer and D. E. Guttman, Novel method for studying protein binding, J. Pharmaceut. Sci. 57:1627–1629 (1968).

    CAS  Google Scholar 

  238. M. C. Meyer and D. E. Guttman, Dynamic dialysis as a method for studying protein binding II: Evaluation of the method with a number of binding systems, J. Pharmaceut. Sci. 59:39–48(1970).

    CAS  Google Scholar 

  239. A. B. Pardee and L. S. Prestidge, Cell-free activity of a sulfate binding site involved in active transport, Proc. Nat. Acad. Sci. U.S. 55:189–191(1966).

    CAS  Google Scholar 

  240. A. B. Pardee, L. S. Prestidge, M. B. Whipple, and J. Dreyfuss, A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium, J. Biol. Chem. 241:3962–3969 (1966).

    PubMed  CAS  Google Scholar 

  241. R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Vitamin D-dependent calcium-binding protein, J. Biol. Chem. 243:3978–3986 (1968).

    PubMed  CAS  Google Scholar 

  242. G. H. Lathe and C. R. J. Ruthven, The separation of substances and estimation of their relative molecular sizes by the use of columns of starch in water, Biochem. J. (London) 62:665–674(1956).

    CAS  Google Scholar 

  243. J. Porath and P. Flodin, Gel filtration: A method for desalting and group separation, Nature (London) 183:1657–1659 (1959).

    CAS  Google Scholar 

  244. P. Andrews, Estimation of the molecular weights of proteins by Sephadex gel-filtration, Biochem. J. 91:222–233 (1964).

    PubMed  CAS  Google Scholar 

  245. J. P. Hummel and W. J. Dreyer, Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63:530–532 (1962).

    PubMed  CAS  Google Scholar 

  246. G. F. Fairclough, Jr., and J.S. Fruton, Peptide-protein interaction as studied by gel filtration, Biochemistry 5:673–683 (1966).

    PubMed  CAS  Google Scholar 

  247. G. C. Wood and P. F. Cooper, The application of gel filtration to the study of protein binding of small molecules, Chromatog. Rev. 12:88–107 (1970).

    CAS  Google Scholar 

  248. E. G. Rozantzev and M. B. Neiman, Organic radical reactions involving no free valence, Tetrahedron 20:131–137 (1964).

    Google Scholar 

  249. C. L. Hamilton and H. M. McConnell, Spin labels, in Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), pp. 115–149, W. H. Freeman and Co., San Francisco and London (1968).

    Google Scholar 

  250. O. H. Griffith and A. S. Waggoner, Nitroxide free radicals: spin labels for probing bio-molecular structure, Accts. Chem. Res. 2:17–24 (1969).

    CAS  Google Scholar 

  251. W. C. Landgraf and G. Inesi, ATP dependent conformational change in “spin labelled” sarcoplasmic reticulum, Arch. Biochem. Biophys. 130:111–118 (1969).

    PubMed  CAS  Google Scholar 

  252. W. L. Hubbell and H. M. McConnell, Orientation and motion of amphiphilic spin labels in membranes, Proc. Nat. Acad. Sci. U.S. 64:20–27 (1969).

    CAS  Google Scholar 

  253. J. C. Hsia and L. H. Piette, Spin-labeling as a general method in studying antibody active site, Arch. Biochem. Biophys. 129:296–307 (1969).

    PubMed  CAS  Google Scholar 

  254. J. C. Hsia and L. H. Piette, Spin-labeled hapten studies of structure heterogeneity and cross-reactivity of the antibody active site, Arch. Biochem. Biophys. 132:466–469 (1969).

    PubMed  CAS  Google Scholar 

  255. A. J. Murphy, J. A. Duke, and L. Stowring, Synthesis of 6-mercapto-9-β-D-ribofuranosyl-purine 5’-triphosphate, a sulfhydryl analog of ATP, Arch. Biochem. Biophys. 137:297–298 (1970).

    PubMed  CAS  Google Scholar 

  256. F. Jacob, Genetics of the bacterial cell, Science 152:1470–1478 (1966).

    PubMed  CAS  Google Scholar 

  257. J. Dreyfuss, Characterization of a sulfate- and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239:2292–2297 (1964).

    PubMed  CAS  Google Scholar 

  258. C. F. Fox, J. R. Carter, and E. P. Kennedy, Genetic control of the membrane protein component of the lactose transport system of Eschericha coli, Proc. Nat. Acad. Sci. U.S. 57:698–705(1967).

    CAS  Google Scholar 

  259. F. H. Epstein, A. I. Katz, and G. E. Pickford, Sodium- and potassium-activated adenosine triphosphatase of gills: role in adaptation of teleosts to salt water, Science 156:1245–1247(1967).

    PubMed  CAS  Google Scholar 

  260. L. Wofsy, H. Metzger, and S. J. Singer, Affinity labeling—a general method for labeling the active sites of antibody and enzyme molecules, Biochemistry 1:1031–1039 (1962).

    PubMed  CAS  Google Scholar 

  261. H. Metzger, L. Wofsy, and S. J. Singer, Affinity labeling of the active sites of antibodies to the 2,4-dinitrophenyl hapten, Biochemistry 2:979–988 (1963).

    PubMed  CAS  Google Scholar 

  262. G. Schoellmann and E. Shaw, Direct evidence for the presence of histidine in the active center of chymotrypsin, Biochemistry 2:252–255 (1963).

    PubMed  CAS  Google Scholar 

  263. P. L. Whitney, G. Fölsch, P. O. Nyman, and B. G. Malmström, Inhibition of human erythrocyte carbonic anhydrase B by chloroacetyl sulfonamides with labeling of the active site, J. Biol. Chem. 242:4206–4211 (1967).

    PubMed  CAS  Google Scholar 

  264. W. N. Scott, Y. E. Shamoo, and W. A. Brodsky, Carbonic anhydrase content of turtle urinary bladder mucosal cells, Biochim. Biophys. Acta 219:248–250 (1970).

    PubMed  CAS  Google Scholar 

  265. A. E. Ruoho, L. E. Hokin, R. J. Hemingway, and S. M. Kupchan, Hellebrigenin 3-haloacetates : potent site-directed alkylators of transport adenosine-triphosphatase, Science 159:1354–1355(1968).

    PubMed  CAS  Google Scholar 

  266. A. E. Ruoho, P. A. Meitner, and L. E. Hokin, Studies on characterization of the sodium-potassium transport adenosine-triphosphatase III. Synthesis of strophanthidin 3-[1–14C]-bromoacetate for affinity labeling of the cardiotonic steroid site, Anal. Biochem. 28:119–129 (1969).

    PubMed  CAS  Google Scholar 

  267. P. K. Nakane, G. E. Nichoalds, and D. L. Oxender, Cellular localization of leucinebinding protein from Escherichia coli, Science 161:182–183 (1968).

    PubMed  CAS  Google Scholar 

  268. T. L. Whiteside and M. R. J. Salton, Antibody to adenosine triphosphatase from membranes of Micrococcus lysodeikticus, Biochemistry 9:3034–3040 (1970).

    PubMed  CAS  Google Scholar 

  269. M.J. Melancon, Jr., and H. F. DeLuca, Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders, Biochemistry 9:1658–1664 (1970).

    PubMed  CAS  Google Scholar 

  270. H. Harris, The Principles of Human Biochemical Genetics, pp. 177–183, North-Holland, Amsterdam and London (1970).

    Google Scholar 

  271. B. Rennick, B. Hamilton, and R. Evans, Development of renal tubular transports of TEA and PAH in the puppy and piglet, Am. J. Physiol. 201:743–746 (1961).

    PubMed  CAS  Google Scholar 

  272. J. J. Deren, H. A. Padykula, and T. H. Wilson, Development of structure and function in the mammalian yolk sac. III. The development of amino acid transport by rabbit yolk sac, Develop. Biol. 13:370–384(1966).

    PubMed  CAS  Google Scholar 

  273. J. H. Butt, II, and T. H. Wilson, Development of sugar and amino acid transport by intestine and yolk sac of the guinea pig, Am. J. Physiol. 215:1468–1477 (1968).

    PubMed  CAS  Google Scholar 

  274. J. Dreyfuss and A. B. Pardee, Evidence for a sulfate-binding site external to the cell membrane of Salmonella typhimurium, Biochim. Biophys. Acta 104:308–310 (1965).

    PubMed  CAS  Google Scholar 

  275. A. B. Pardee, Regulation of active transport, National Cancer Inst. Monograph No. 27: 249–257 (1967).

    CAS  Google Scholar 

  276. R. Langridge, H. Shinagawa, and A. B. Pardee, Sulfate-binding protein from Salmonella typhimurium: physical properties, Science 169:59–61 (1970).

    PubMed  CAS  Google Scholar 

  277. D. Schachter and S. M. Rosen, Active transport of Ca45 by the small intestine and its dependence on vitamin D, Am. J. Physiol. 196:357–362 (1959).

    PubMed  CAS  Google Scholar 

  278. D. Schachter, S. Kowarski, J. D. Finkelstein, and R. W. Ma. Tissue concentration differences during active transport of calcium by intestine, Am. J. Physiol. 211:1131–1136 (1966).

    PubMed  CAS  Google Scholar 

  279. R. H. Wasserman and F. A. Kallfelz, Vitamin D3 and unidirectional calcium fluxes across the rachitic chick duodenum, Am. J. Physiol. 203:221–224 (1962).

    PubMed  CAS  Google Scholar 

  280. R. H. Wasserman, A. N. Taylor, and F. A. Kallfelz, Vitamin D and transfer of plasma calcium to intestinal lumen in chicks and rats, Am. J. Physiol. 211:419–423 (1966).

    PubMed  CAS  Google Scholar 

  281. R. Eisenstein and M. Passavoy, Actinomycin D inhibits parathyroid hormone and vitamin D activity, Proc. Soc. Exp. Biol. Med. 117:77–79 (1964).

    PubMed  CAS  Google Scholar 

  282. R. H. Wasserman and A. N. Taylor, Vitamin D3-induced calcium-binding protein in chick intestinal mucosa, Science 152:791–793 (1966).

    PubMed  CAS  Google Scholar 

  283. R. H. Wasserman, Interaction of vitamin D-dependent calcium binding protein with lysolecithin: Possible relevance to calcium transport, Biochim. Biophys. Acta 203:176–179 (1970).

    PubMed  CAS  Google Scholar 

  284. J. R. Piperno and D. L. Oxender, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732–5734 (1966).

    PubMed  CAS  Google Scholar 

  285. W. R. Penrose, G. E. Nichoalds, J. R. Piperno, and D. L. Oxender, Purification and properties of a leucine-binding protein from Escherichia coli, J. Biol. Chem. 243:5921–5928 (1968).

    PubMed  CAS  Google Scholar 

  286. Y. Anraku, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins. J. Biol. Chem. 243:3116–3122 (1968).

    PubMed  CAS  Google Scholar 

  287. Y. Anraku, Transport of sugars and amino acids in bacteria. II. Properties of galactose-and leucine-binding proteins, J. Biol. Chem. 243:3123–3127 (1968).

    PubMed  CAS  Google Scholar 

  288. Y. Anraku, Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport, J. Biol. Chem. 243:3128–3135 (1968).

    PubMed  CAS  Google Scholar 

  289. Y. Anraku, The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793–800 (1967).

    PubMed  CAS  Google Scholar 

  290. C. Haskovec and A. Kotyk, Attempts at purifying the galactose carrier from galactoseinduced baker’s yeast, Eur. J. Biochem. 9:343–347 (1969).

    PubMed  CAS  Google Scholar 

  291. W. Kundig, S. Ghosh, and S. Roseman, Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system, Proc. Nat. Acad. Sci. U.S. 52:1067–1074 (1964).

    CAS  Google Scholar 

  292. B. Anderson, W. Kundig, R. Simoni, and S. Roseman, Further studies of carbohydrate permeases, Fed. Proc. 27 (abstract):643 (1968).

    Google Scholar 

  293. W. Kundig and S. Roseman, Further studies on bacterial permeases, Fed. Proc. 28 (abstract):463 (1969).

    Google Scholar 

  294. S. Tanaka and E. C. C. Lin, Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system, Proc. Nat. Acad. Sci. U.S. 57:913–919 (1967).

    CAS  Google Scholar 

  295. R. D. Simoni, M. Levinthal, F. D. Kundig, W. Kundig, B. Anderson, P. E. Hartman, and S. Roseman, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Nat. Acad. Sci. U.S. 58:1963–1970 (1967).

    CAS  Google Scholar 

  296. S. Tanaka, S. A. Lerner, and E. C. C. Lin, Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol, J. Bacteriol. 93:642–648 (1967).

    PubMed  CAS  Google Scholar 

  297. C. F. Fox and G. Wilson, The role of a phosphoenolpyruvate-dependent kinase system in β-glucoside catabolism in Escherichia coli, Proc. Nat. Acad. Sci. U.S. 59:988–995 (1968).

    CAS  Google Scholar 

  298. W. Kundig, F. D. Kundig, B. Anderson, and S. Roseman, Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system, J. Biol. Chem. 241:3243–3246 (1966).

    PubMed  CAS  Google Scholar 

  299. H. R. Kaback, The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243:3711–3724(1968).

    PubMed  CAS  Google Scholar 

  300. M. M. Weiser and K. Isselbacher, Phosphoenolpyruvate-activated phosphorylation of sugars by intestinal mucosa, Biochim. Biophys. Acta 208:349–359 (1970).

    PubMed  CAS  Google Scholar 

  301. J. C. Skou, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394–401 (1957).

    PubMed  CAS  Google Scholar 

  302. R. L. Post, C. R. Merritt, C. R. Kinsolving, and C. D. Albright, Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte, J. Biol. Chem. 235:1796–1802 (1960).

    PubMed  CAS  Google Scholar 

  303. I. M. Glynn, Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium, J. Physiol. (London) 160:18P–19P (1961).

    Google Scholar 

  304. G. J. Siegel and R. W. Albers, Nucleoside triphosphate phosphohydrolases, in Handbook of Neuro chemistry (A. Lajtha, ed.), Vol. 4, pp. 13–44, Plenum, New York (1971).

    Google Scholar 

  305. W. Schoner, C. von Ilberg, R. Kramer, and W. Seubert, On the mechanism of Na+ -and K+-stimulated hydrolysis of adenosine triphosphate. I. Purification and properties of a Na+ — and K+-activated ATPase from ox brain, Eur. J. Biochem. 1:334–343 (1967).

    PubMed  CAS  Google Scholar 

  306. D. W. Towle and J. H. Copenhaver, Jr., Partial purification of a soluble (Na+ + K+)-dependent ATPase from rabbit kidney, Biochim. Biophys. Acta 203:124–132 (1970).

    PubMed  CAS  Google Scholar 

  307. F. Medzihradsky, M. H. Kline, and L. E. Hokin, Studies on the characterization of the sodium-potassium transport adenosinetriphosphatase. I. Solubilization, stabilization, and estimation of apparent molecular weight, Arch. Biochem. Biophys. 121:311–316 (1967).

    PubMed  CAS  Google Scholar 

  308. A. Kahlenberg, N. C. Dulak, J. F. Dixon, P. R. Galsworthy, and L. E. Hokin, Studies on the characterization of the sodium-potassium transport adenosine-triphosphatase. V. Partial purification of the Lubrol-solubilized beef brain enzyme, Arch. Biochem. Biophys. 131:253–262 (1969).

    PubMed  CAS  Google Scholar 

  309. M. K. Jain, A. Strickholm, and E. H. Cordes, Reconstitution of an ATP-mediated active transport system across black lipid membranes, Nature (London) 222:871–872 (1969).

    CAS  Google Scholar 

  310. W. R. Redwood, H. Müldner, and T. E. Thompson, Interaction of a bacterial adenosine triphosphatase with phospholipid bilayers, Proc. Nat. Acad. Sci. U.S. 64:989–996 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Wyssbrod, H.R., Scott, W.N., Brodsky, W.A., Schwartz, I.L. (1971). Carrier-Mediated Transport Processes. In: Metabolic Turnover in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7169-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7169-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7171-1

  • Online ISBN: 978-1-4615-7169-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics