Skip to main content

Dissipative Transport Processes

  • Chapter
  • 35 Accesses

Abstract

The earliest concept of the plasma membrane was that of an ultrathin porous film separating two aqueous solutions in physical as well as in biological systems. In physical systems, use of the porous film model led to the development of the laws of osmotic pressure and to the laws governing the equilibrium distribution of ions across membranes. In biological systems, use of the model has accounted for some, but not for all of the data on distribution and transfer rates of materials across cell membranes. Recent developments have been concerned with the chemical architecture of biological membranes as well as the material transfers across cell membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Stoeckenius and D. M. Engelman, Current models for the structure of biological membranes, J. Cell. Biol. 42:613–646 (1969).

    Article  PubMed  CAS  Google Scholar 

  2. D. Chapman, (ed.), Biological Membranes, Academic Press, New York (1968).

    Google Scholar 

  3. J. T. Edsall and J. Wyman, Biophysical Chemistry, Vol. 1, Academic Press (1958).

    Google Scholar 

  4. S. L. Miller, Production of some organic compounds under possible primitive earth conditions, J. Am. Chem. Soc. 77:2351–2361 (1955).

    Article  CAS  Google Scholar 

  5. J. D. Bernai, The Physical Basis of Life, Routledge and Kegan Paul, London (1951).

    Google Scholar 

  6. A. Katchalsky, Biological organization and thermodynamics Symposium IV. Third International Biophysics Congress, IUPAB, Cambridge, Mass. (1969).

    Google Scholar 

  7. T. Rosenberg, Accumulation and active transport in biological systems I. Thermodynamic considerations, Acta Chem. Scand. 2:14–33 (1948).

    Article  CAS  Google Scholar 

  8. F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3:318–356(1961).

    Article  PubMed  CAS  Google Scholar 

  9. H. Davson and J. F. Danielli, The Permeability of Natural Membranes, Cambridge Univ. Press, London (1952).

    Google Scholar 

  10. F. O. Schmitt, R. S. Bear, and K. J. Palmer, X-ray diffraction studies on the structure of the nerve myelin sheath, J. Cell. Comp. Physiol. 18:31–41 (1941).

    Article  CAS  Google Scholar 

  11. J. D. Robertson, New observations on the ultrastructure of the membranes of frog peripheral nerve fibers, J. Biophys. Biochem. Cytol. 3:1043–1047 (1957).

    Article  PubMed  CAS  Google Scholar 

  12. J. B. Finean, The nature and stability of nerve myelin, Intern. Rev. of Cytol. 12:303–336 (1961).

    Article  CAS  Google Scholar 

  13. H. Fernandez-Moran, New approaches in the study of biological ultrastructure by high resolution electron microscopy, in Symposia of the International Society for Cell Biology (R. J. C. Harris, ed.), pp. 411–428, Vol. I, Academic Press, New York (1962).

    Google Scholar 

  14. E. D. Korn, II. Synthesis of bis(methyl 9, 10-dihydroxy-sterate) osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material, Biochim. Biophys. Acta 116:317–324 (1966).

    Article  PubMed  CAS  Google Scholar 

  15. E. D. Korn, III. Modification of oleic acid during fixation of amoebae by osmium tetroxide, Biochim. Biophys. Acta 116:325–335 (1966).

    Article  PubMed  CAS  Google Scholar 

  16. D. F. H. Wallach, Membrane lipids and the conformations of membrane proteins, in Membrane Proteins, Proc. Sympos. N.Y. Heart Association, pp. 3–26, Little, Brown and Co., Boston (1969).

    Google Scholar 

  17. V. Luzzati, X-ray diffraction studies of lipid-water systems, in Biological Membranes (D. Chapman, ed.), pp. 71–124, Academic Press, New York (1968).

    Google Scholar 

  18. D. A. Haydon and J. Taylor, The stability and properties of bimolecular lipid leaflets in aqueous solutions, J. Theoret. Biol. 4:281–296 (1963).

    Article  CAS  Google Scholar 

  19. E. D. Korn, Structure and function of the plasma membrane, inBiological Interfaces: Flows and Exchanges, Proc. Sympos. N.Y. Heart Assoc, pp. 257–278, Little Brown and Co., Boston (1968).

    Google Scholar 

  20. L. L. M. van Deenen and J. de Gier, Chemical composition and metabolism of lipids in red cells of various animals species, in The Red Blood Cell (C. Bishop and D. M. Surgenor, eds.), pp. 243–308, Academic Press, New York (1964).

    Google Scholar 

  21. A. B. Pardee, Membrane transport proteins, Science 162:632–637 (1968).

    Article  PubMed  CAS  Google Scholar 

  22. P. G. LeFevre, The behavior of phospholipid-glucose complexes at hexane/aqueous interfaces, in Currents in Modern Biology, Vol. I, pp. 29–38, North Holland Publishing Co., Amsterdam (1967).

    Google Scholar 

  23. C. Y. Jung, J. E. Chaney, and P. G. LeFevre, Enhanced migration of glucose from water into chloroform in the presence of phospholipids, Arch. Biochem. Biophys. 126:664–676 (1968).

    Article  PubMed  CAS  Google Scholar 

  24. P. G. LeFevre, C. Y. Jung, and J. E. Chaney, Glucose transfer by red cell phospholipids in H2O/CHC13/H2O three layer systems, Arch. Biochem. Biophys. 126:677–691 (1968).

    Article  PubMed  CAS  Google Scholar 

  25. R. L. Post, C. R. Merritt, C. R. Kinsolving, and C. D. Albright, Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte, J. Biol. Chem. 235:1796–1802 (1960).

    PubMed  CAS  Google Scholar 

  26. E. T. Dunham and I. M. Glynn, Adenosinetriphosphatase activity and the active movements of alkali metal ions, J. Physiol. (London) 156:274–293 (1961).

    CAS  Google Scholar 

  27. R. E. Solinger, C. F. Gonzalez, Y. E. Shamoo, H. R. Wyssbrod, and W. A. Brodsky, Effect of ouabain on ion transport mechanisms in the isolated turtle bladder, Am. J. Physiol. 215:249–261 (1968).

    PubMed  CAS  Google Scholar 

  28. Y. E. Shamoo and W. A. Brodsky, The Na + K dependent adenosine triphosphatase in the isolated mucosal cells of turtle bladder, Biochim. Biophys. Acta 203:111–123 (1970).

    Article  PubMed  CAS  Google Scholar 

  29. H. Lardy, Influence of antibiotics and cyclic polyethers on ion transport in mitochondria, Fed. Proc. 27:1278–1282 (1968).

    PubMed  CAS  Google Scholar 

  30. B. C. Pressman, Ionophorous antibiotics as models for biological transport, Fed. Proc. 27:1283–1288(1968).

    PubMed  CAS  Google Scholar 

  31. P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Westcott, Symposium on the plasma membrane. Reconstitution of excitable cell membrane structure in vitro, Circulation 26:1167–1177(1962).

    Article  CAS  Google Scholar 

  32. H. T. Tien and A. L. Diana, Biomolecular lipid membranes: a review and a summary of some recent studies, Chem. Physics Lipids 2:55–101 (1968).

    Article  CAS  Google Scholar 

  33. D. C. Tosteson, Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes, Fed. Proc. 27:1269–1277 (1968).

    PubMed  CAS  Google Scholar 

  34. G. Eisenman, S. M. Ciani, and G. Szabo, Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions, Fed. Proc. 27:1289–1305 (1968).

    PubMed  CAS  Google Scholar 

  35. C. J. Pedersen, Ionic complexes of macrocyclic polyethers, Fed. Proc. 27:1305–1309 (1968)

    PubMed  CAS  Google Scholar 

  36. W. D. Stein, The Movement of Molecules across Cell Membranes (Chapter 6), Academic Press, New York (1967).

    Google Scholar 

  37. P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41:445–502 (1966).

    Article  PubMed  CAS  Google Scholar 

  38. I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Chapter 4), Interscience, John Wiley and Sons, New York (1961).

    Google Scholar 

  39. O. Kedem, and A. Essig, Isotope flows and flux ratios in biological membranes, J. Gen. Physiol. 48:1047–1070 (1965).

    Article  PubMed  CAS  Google Scholar 

  40. H. Davson, A Textbook of General Physiology, J. & A. Churchill Ltd., London (1964).

    Google Scholar 

  41. J. Dainty and B. Z. Ginzburg, The permeability of the protoplasts of Chara aus trails and Nitella translucens to methanol, ethanol and isopropanol, Biochim. Biophys. Acta 79:122–128(1964).

    Google Scholar 

  42. D. A. Goldstein and A. K. Solomon, Determination of equivalent pore radius for human red cells by osmotic pressure measurement, J. Gen. Physiol. 44:11–17 (1960).

    Article  Google Scholar 

  43. T. E. Thompson, The properties of bimolecular phospholipid membranes, in Cellular Membranes in Development (M. Locke, ed.), pp. 83–96, Academic Press, New York (1964).

    Google Scholar 

  44. V. W. Sidel and J. F. Hoffman, Water transport across membrane analogues, Fed. Proc. 20:137 (1962).

    Google Scholar 

  45. O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta 27:229–246 (1958).

    Article  PubMed  CAS  Google Scholar 

  46. O. Kedem and A. Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeability, J. Gen. Physiol. 45:143–179 (1961).

    Article  PubMed  CAS  Google Scholar 

  47. P. F. Curran and J. R. Mcintosh, A model system for biological water transport, Nature 193:347–348(1962).

    Article  PubMed  CAS  Google Scholar 

  48. J. E. Franck and J. E. Mayer, An osmotic diffusion pump, Arch. Biochem. 14:297–313 (1947).

    PubMed  CAS  Google Scholar 

  49. W. A. Brodsky, W. S. Rehm, W. H. Dennis, and D. G. Miller, Thermodynamic analysis of the intracellular osmotic gradient hypothesis of active water transport, Science 121:302–303 (1955).

    Article  PubMed  CAS  Google Scholar 

  50. W. J. V. Osterhout, Movements of water in cells of Nitella, J. Gen. Physiol. 32:553–557 (1949).

    Article  PubMed  CAS  Google Scholar 

  51. W. J. V. Osterhout, Transport of water from concentrated to dilute solutions in cells of Nitella, J. Gen. Physiol. 32:559–566 (1949).

    Article  CAS  Google Scholar 

  52. J. M. Diamond and W. H. Bossert, Standing gradient osmotic flow. A mechanism for coupling of water and solute transport, J. Gen. Physiol. 50:2061–2081 (1967).

    Article  PubMed  CAS  Google Scholar 

  53. J. McD. Tormey and J. Diamond, The ultrastructural route of fluid transport rabbit gall bladder, J. Gen. Physiol. 50:2031–2059 (1967).

    Article  PubMed  CAS  Google Scholar 

  54. T. P. Schilb and W. A. Brodsky, Transient acceleration of transmural water flow by inhibition of sodium transport in turtle bladders, Amer. J. Physiol. 219:590–596 (1970).

    PubMed  CAS  Google Scholar 

  55. G. Meschia and I. Setnikar, Experimental study of osmosis through a collodion membrane, J. Gen. Physiol. 42:429–444 (1958).

    Article  PubMed  CAS  Google Scholar 

  56. T. Teorell, Transport phenomena in membranes, Discussions Faraday Soc. 21:9–26 (1956).

    Article  Google Scholar 

  57. H. H. Ussing, Distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19:43–56 (1949).

    Article  CAS  Google Scholar 

  58. A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fiber, J. Physiol. (London) 128:61–88 (1955).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Brodsky, W.A., Shamoo, A.E., Schwartz, I.L. (1971). Dissipative Transport Processes. In: Metabolic Turnover in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7169-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7169-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7171-1

  • Online ISBN: 978-1-4615-7169-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics