Skip to main content

Metabolism and Function in Nerve Fibers

  • Chapter
Metabolic Turnover in the Nervous System

Abstract

The preparations of intact cells that have been used in the past to study metabolism and function in nervous tissue vary in complexity from the human brain in vivo (1,2) to isolated single nerve fibers of invertebrates. (3–7) The extent to which results obtained with any one type of preparation are applicable to the others is an open question because there is considerable evidence of differences in the biochemistry of different parts of the nervous system. (8) However, as will be discussed below in comparing myelinated and nonmyelinated fibers, some seemingly qualitative differences in metabolism, such as the enormous difference in sensitivity to glucose deprivation, may be more apparent than real.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. McIlwain, Biochemistry and the Central Nervous System, 2nd ed., Churchill, London (1959).

    Google Scholar 

  2. H. McIlwain, Chemical Exploration of the Brain (A study of cerebral excitability and ion movement), Elsevier, Amsterdam (1963).

    Google Scholar 

  3. P. C. Caldwell, The phosphorus metabolism of squid axons and its relationship to the active transport of sodium, J. Physiol. 152:545–560 (1960).

    PubMed  CAS  Google Scholar 

  4. P. C. Caldwell, A. L. Hodgkin, R. D. Keynes, and T. I. Shaw, The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo, J. Physiol. 152:561–590 (1960).

    PubMed  CAS  Google Scholar 

  5. P. C. Caldwell, A. L. Hodgkin, R. D. Keynes, and T. I. Shaw, The rate of formation and turnover of phosphorus compounds in squid giant axons, J. Physiol. 171:119–131 (1964).

    PubMed  CAS  Google Scholar 

  6. A. L. Hodgkin and R. D. Keynes, Active transport of cations in giant axons from Sepia and Loligo, J. Physiol. 128:28–60 (1955).

    PubMed  CAS  Google Scholar 

  7. A. L. Hodgkin and R. D. Keynes, Experiments on the injection of substances into squid giant axons by means of a microsyringe, J. Physiol. 131:592–616 (1956).

    PubMed  CAS  Google Scholar 

  8. S. S. Kety and J. Elkes, eds. Regional Neurochemistry, Pergamon Press, New York (1961).

    Google Scholar 

  9. S. S. Kety, The general metabolism of the brain in vivo, inMetabolism of the Nervous System (D. Richter, ed.), pp. 221–237, Pergamon Press, New York (1957).

    Google Scholar 

  10. D. Richter, Brain metabolism and cerebral function, inMetabolism and Function in Nervous Tissue (R. T. Williams, ed.), pp. 62–76, Cambridge University Press, Cambridge (1952).

    Google Scholar 

  11. M. G. Larrabee and P. Horowicz, Glucose and oxygen utilization in sympathetic ganglia. I. Effects of anesthetics. II. Substrates for oxidation at rest and in activity, in Molecular Structure and Functional Activity of Nerve Cells (R. G. Grenell and L. J. Mullins, eds.), pp. 84–122, Publication No. 1 of American Institute of Biological Sciences, Washington (1956).

    Google Scholar 

  12. M. G. Larrabee, P. Horowicz, W. Stekiel, and M. Dolivo, Metabolism in relation to function in mammalian sympathetic ganglia, in Metabolism of the Nervous System (D. Richter, ed.), pp. 208–220, Pergamon Press, New York (1957).

    Google Scholar 

  13. A. den Hertog and J. M. Ritchie, The effect of some quaternary compounds and local anesthetics on the electrogenic component of the sodium pump in mammalian nonmyelinated nerve fibers, Eur. J. Pharmac. 6:138–142 (1969).

    Article  Google Scholar 

  14. A. L. Hodgkin, The ionic basis of electrical activity in nerve and muscle, Biol. Rev. 26:339–409 (1951).

    Article  CAS  Google Scholar 

  15. A. L. Hodgkin, The Conduction of the Nervous Impulse, Charles C. Thomas, Illinois (1964).

    Google Scholar 

  16. R. D. Keynes, The energy source for active transport in nerve and muscle, in Membrane Transport and Metabolism (A. Kleinzeller and A. Kotyk, eds.), pp. 131–139, Academic Press, New York (1961).

    Google Scholar 

  17. M. G. Larrabee and D. W. Bronk, Metabolic requirements of sympathetic neurons, Cold Spring Harbor Symp. Quant. Biol. 17: 245:266 (1952).

    Google Scholar 

  18. J. M. Ritchie, The oxygen consumption of mammalian nonmyelinated nerve fibers at rest and during activity, J. Physiol. 188:309–329 (1967).

    PubMed  CAS  Google Scholar 

  19. W. A. H. Rushton, A theory of the effects of fibre size in medullated nerve, J. Physiol. 115:101–122 (1951).

    PubMed  CAS  Google Scholar 

  20. B. C. Abbott, A. V. Hill, and J. V. Howarth, The positive and negative heat production associated with a single impulse, Proc. R. Soc. B. 148:149–187 (1958).

    Article  CAS  Google Scholar 

  21. R. D. Keynes and J. M. Ritchie, The movements of labeled ions in mammalian nonmyelinated nerve fibers, J. Physiol. 179:333–367 (1965a).

    PubMed  CAS  Google Scholar 

  22. F. Brink, D. W. Bronk, F. D. Carlson, and C. M. Connelly, The oxygen uptake of active axons, Cold Spring Harbor Symp. Quant. Biol. 17:53–67 (1952).

    Article  PubMed  CAS  Google Scholar 

  23. F. Brink, Nerve metabolism, in Metabolism of the Nervous System (D. Richter, ed.), pp. 187–207, Pergamon Press, New York (1957).

    Google Scholar 

  24. R. W. Gerard and N. Tupikova, Nerve and muscle phosphates, J. Cell. Comp. Physiol. 13:1–13 (1939).

    Article  CAS  Google Scholar 

  25. P. Greengard and R. W. Straub, Effect of frequency of electrical stimulation on the concentration of intermediary metabolites in mammalian nonmyelinated fibers, J. Physiol. 148:353–361 (1959).

    PubMed  CAS  Google Scholar 

  26. P. Montant and M. Chmouliovsky, Energy-rich metabolites in stimulated mammalian nonmyelinated nerve fibers, Experientia 24:782–783 (1968).

    Article  PubMed  CAS  Google Scholar 

  27. M. Chmouliovsky, M. Schorderet, and R. W. Straub, Effect of electrical activity on the concentration of phosphorylated metabolites and inorganic phosphate in mammalian nonmyelinated nerve fibers, J. Physiol. 202:90–92 (1969).

    Google Scholar 

  28. J. M. Ritchie and R. W. Straub, The hyperpolarization which follows activity in mammalian nonmedullated fibers, J. Physiol. 136:80–97 (1957).

    PubMed  CAS  Google Scholar 

  29. J. M. Ritchie, Possible mechanism underlying production of after-potential in nerve fibers, in Biophysics of Physiological and Pharmacological Actions, pp. 165–182, American Association for the Advancement of Science (1961).

    Google Scholar 

  30. O. Holmes, Effects of pH, changes in potassium concentration and metabolic inhibitors on the after-potentials of mammalian nonmedullated nerve fibers, Arch. Int. Physiol. 70:211–245 (1962).

    Article  PubMed  CAS  Google Scholar 

  31. P. Greengard and R. W. Straub, Metabolic studies on the hyperpolarization following activity in mammalian nonmyelinated nerve fibers, J. Physiol. 161:414–423 (1962).

    PubMed  CAS  Google Scholar 

  32. H. P. Rang and J. M. Ritchie, On the electrogenic sodium pump in mammalian nonmyelinated nerve fibers and its activation by various external cations, J. Physiol. 196:183–221 (1968b).

    PubMed  CAS  Google Scholar 

  33. H. P. Rang and J. M. Ritchie, The dependence on external cations of the oxygen consumption of mammalian nonmyelinated fibers at rest and during activity, J. Physiol. 196:163–181 (1968a).

    PubMed  CAS  Google Scholar 

  34. J. V. Howarth, R. D. Keynes, and J. M. Ritchie, The heat production of mammalian nonmyelinated (C) nerve fibers, J. Physiol. 186:60–62 (1966).

    Google Scholar 

  35. J. V. Howarth, R. D. Keynes, and J. M. Ritchie, The origin of the initial heat associated with a single impulse in mammalian nonmyelinated nerve fibers, J. Physiol. 194: 745–793 (1968).

    PubMed  CAS  Google Scholar 

  36. P. Greengard, Determination of intermediary metabolites by enzymic fluorimetry, Nature (London), 178:632–634 (1956).

    Article  CAS  Google Scholar 

  37. P. Greengard, Adenosin-5′-triphosphat. Bestimmung durch enzymatische fluorimetrie, in Methoden der Enzymatischen Analyse (H. U. Bergmeyer, ed.), 551–558, Verlag Chemie (1962).

    Google Scholar 

  38. F. Folkow, Impulse frequency in sympathetic vasomotor fibers correlated to the release and elimination of the transmitter, Acta Physiol. Scand. 25:49–76 (1952).

    Article  PubMed  CAS  Google Scholar 

  39. W. W. Douglas and J. M. Ritchie, On the frequency of firing of mammalian nonmedullated nerve fibers, J. Physiol. 139:400–407 (1957).

    PubMed  CAS  Google Scholar 

  40. R. A. Alberty, Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates, J. Biol. Chem. 244: 3290–3302 (1969).

    PubMed  CAS  Google Scholar 

  41. S. Nakajima and K. Takahashi, Posttetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish, J. Physiol. 187:105–127 (1966).

    PubMed  CAS  Google Scholar 

  42. R. W. Straub, On the mechanism of posttetanic hyperpolarization in myelinated nerve fibers from the frog, J. Physiol. 159:19–20 (1961).

    Google Scholar 

  43. C. M. Connelly, Recovery processes and metabolism in nerve, Rev. Mod. Phys. 31:475–484 (1959).

    Article  CAS  Google Scholar 

  44. C. M. Connelly, Metabolic and electrochemical events associated with recovery from activity, Proc. XXII Int. Cong. Physiol. Lectures and Symposia 1:600–602 (1962).

    CAS  Google Scholar 

  45. A. den Hertog, P. Greengard, and J. M. Ritchie, On the metabolic basis of nervous activity, J. Physiol. 204:511–521 (1969).

    Google Scholar 

  46. A. den Hertog and J. M. Ritchie, A comparison of the effect of temperature, metabolic inhibitors, and of ouabain on the electrogenic component of the sodium pump in mammalian nonmyelinated nerve fibers, J. Physiol. 204:523–538 (1969).

    Google Scholar 

  47. H. P. Rang and J. M. Ritchie, The ionic content of mammalian nonmyelinated nerve fibers and its alteration as a result of electrical activity, J. Physiol. 196:223–236 (1968).

    PubMed  CAS  Google Scholar 

  48. A. V. Hill, Moving-coil galvanometers of short period and their amplification, J. Scient. Instrum. 25:225–229 (1948).

    Article  Google Scholar 

  49. R. D. Keynes and J. M. Ritchie, The thermodynamics of nerve and electric organ, in Nerve as a Tissue, pp. 293–304, Harper and Row, New York (1965b).

    Google Scholar 

  50. J. F. Hoffman and C. J. Ingram, Cation transport and the binding of T-ouabain to intact human red cells, Proc. 1st int. Symp. on Metabolism and Permeability of Erythrocytes and Thrombocytes, Thieme, Stuttgart (1969).

    Google Scholar 

  51. J. F. Hoffman, The interaction between tritiated ouabain and the Na-K pump in red blood cells, J. Gen. Physiol. 54:343–350 (1969).

    PubMed  CAS  Google Scholar 

  52. J. C. Ellory and R. D. Keynes, Binding of tritiated digoxin to human red cell ghosts, Nature 211:776 (1969).

    Article  Google Scholar 

  53. D. Landowne and J. M. Ritchie, The binding of tritiated ouabain to mammalian nonmyelinated nerve fibers, J. Physiol. 207:529–537 (1970).

    PubMed  CAS  Google Scholar 

  54. J. W. Moore, T. Narahashi, and T. I. Shaw, An upper limit to the number of sodium channels in nerve membrane, J. Physiol. 188:99–105 (1967).

    PubMed  CAS  Google Scholar 

  55. P. F. Baker and J. S. Willis, On the number of sodium pumping sites in cell membranes, Biochim. Biophys. Acta 183:646–649 (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Greengard, P., Ritchie, J.M. (1971). Metabolism and Function in Nerve Fibers. In: Metabolic Turnover in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7166-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7166-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7168-1

  • Online ISBN: 978-1-4615-7166-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics