Skip to main content

Histidine Decarboxylase and Dopa Decarboxylase

  • Chapter
Control Mechanisms in the Nervous System

Abstract

The concept of neural transmission is intimately connected with that of the functional significance of the biogenic amines. Although so far relatively few amines have been recognized as transmitter compounds, it is frequently assumed that all amines in the central nervous systems (CNS) have some function related to the control or facilitation of impulse conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. L. Perry, A. Hansen, J. G. Foulks, and G. M. Ling, Aliphatic and aromatic amines of cat brain, J. Neurochem. 12(5):397–405 (1965).

    Article  PubMed  CAS  Google Scholar 

  2. T. L. Perry, S. Hansen, and L. MacDougall, Amines of human whole brain, J. Neurochem. 14(7):775–782 (1967).

    Article  PubMed  CAS  Google Scholar 

  3. T. Nakajima, F. Wolfgram, and W. G. Clark, Identification of 1,4-methylhistamine, 1,3-diaminopropane, and 2,4-diaminobutyric acid in bovine brain, J. Neurochem. 14(12):1113–1118 (1967).

    Article  PubMed  CAS  Google Scholar 

  4. N. Seiler and M. Wiechmann, Zum Nachweis von Aminen im 10-10-Molmassstab. Trennung von l-Dimethylaminonaphthalin-5-sulfonsäure-amiden auf Dünnschichtchromato-grammen, Experientia 21(4):203–204 (1965).

    Article  PubMed  CAS  Google Scholar 

  5. W. B. Quay, J. Ariens-Kappers, and J. F. Jongkind, Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake, J. Neuro-Visceral Relations 31:11–25(1968).

    Article  CAS  Google Scholar 

  6. A. H. Amin, T. B. B. Crawford, and J. H. Gaddum, XIX International Physiological Congress. Abstracts, pp. 165–166 (1953).

    Google Scholar 

  7. B. Twarog and J. H. Page, Serotonin content of some mammalian tissues and urine and a method for its determination, Am. J. Physiol. 175(1):157–161 (1953).

    PubMed  CAS  Google Scholar 

  8. D. F. Bogdanski, A. Pletscher, B. B. Brodie, and S. Udenfriend, The distribution and assay of serotonin in brain, J. Pharmacol. Exp. Therap. 117(1):82–88 (1956).

    CAS  Google Scholar 

  9. M. Vogt, The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs, J. Physiol. 123(3):451–481 (1954).

    PubMed  CAS  Google Scholar 

  10. Å. Bertler and E. Rosengren, Occurrence and distribution of catecholamines in brain, Acta Physiol. Scand. 47(4):350–361 (1959).

    PubMed  CAS  Google Scholar 

  11. Ã…. Bertler and E. Rosengren, Occurrence and distribution of dopamine in brain and other tissues, Experientia 15(1):10 (1959).

    Article  PubMed  CAS  Google Scholar 

  12. G. W. Harris, D. Jacobsohn, and G. Kahlson, The occurrence of histamine in cerebral regions related to the hypophysis, Ciba Foundation Colloquia on Endocrinology, Vol. 4, pp. 186–194, London, Churchill (1952).

    Google Scholar 

  13. U. S. von Euler, in Histamine (E. W. Wolstenholme and C. M. O’Connor, eds.), pp. 235–241, London, Churchill (1956).

    Google Scholar 

  14. A. Torp, Histamine and mast cells in nerves, Med. Exp. 4(3):180–182 (1961).

    PubMed  CAS  Google Scholar 

  15. R. HÃ¥kanson, Ch. Owman, and B. Sporrong, To be published.

    Google Scholar 

  16. K. Kataoka and E. De Robertis, Histamine in isolated small nerve endings and synaptic vesicles of rat brain cortex, J. Pharmacol Exp. Therap. 156(1):114–125 (1967).

    CAS  Google Scholar 

  17. T. White, Formation and catabolism of histamine in cat brain in vivo, J. Physiol. 152:299–308(1960).

    PubMed  CAS  Google Scholar 

  18. P. L. McGeer, in Comparative Neurochemistry (D. Richter, ed.), pp. 387–391, Pergamon Press, New York (1964).

    Google Scholar 

  19. R. G. Heath and F. Verster De Balbian, Effects of chemical stimulation to discrete brain areas, Am. J. Psychiat. 117(11):980–990 (1961).

    PubMed  CAS  Google Scholar 

  20. B. Falck, Observations on the possibilities of the cellular localization of monoamines by a fluorescence method, Acta Physiol. Scand. 56:Suppl. 197:1–24 (1962).

    Google Scholar 

  21. B. Falck, N. Å. Hillarp, G. Thieme, and A. Torp, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10(3):348–354 (1962).

    Article  CAS  Google Scholar 

  22. H. Corrodi and N.Å. Hillarp, Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. I. Identifizierung der fluoreszierenden Produckte aus Modellversuchen mit 6,7-Dimethoxyisochinolinderivaten und Formaldehyd, Helv. Chim. Acta 46(6):2425–2430 (1963).

    Article  CAS  Google Scholar 

  23. H. Corrodi and N. Å. Hillarp, Fluoreszenzmethoden zur histochemischen Sichtbarmachung von Monoaminen. Identifizierung des fluoreszierenden Produktes aus Dopamin und Formaldehyd, Helv. Chim. Acta 47(3):911–918 (1964).

    Article  CAS  Google Scholar 

  24. N. E. Andén, A. Carlsson, A. Dahlström, K. Fuxe, N. Å. Hillarp, and K. Larsson, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci. 3(6):523–530 (1964).

    Article  PubMed  Google Scholar 

  25. N. E. Andén, A. Dahlström, K. Fuxe, and K. Larsson, Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat, Am. J. Anat. 116(1):329–334 (1965).

    Article  PubMed  Google Scholar 

  26. A. Dahlström and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62:Suppl. 232:1–55 (1964).

    Google Scholar 

  27. A. Dahlström and K. Fuxe, Evidence for the existence of monoamine neurons in the central nervous system; experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems, Acta Physiol. Scand. 64:Suppl. 247:1–35 (1964).

    Google Scholar 

  28. B. Ehinger and R. Thunberg, Induction of fluorescence in histamine-containing cells, Exptl. Cell Res. 47(1–2): 116–122 (1967).

    Article  PubMed  CAS  Google Scholar 

  29. R. Håkanson and Ch. Owman, Concomitant histochemical demonstration of histamine and catecholamines in enterochromaffin-like cells of gastric mucosa, Life Sci. 6:759–766 (1967).

    Article  PubMed  Google Scholar 

  30. B. Ehinger, R. Håkanson, Ch. Owman, and B. Sporrong, Histochemical demonstration of histamine in paraffin sections by a fluorescence method, Biochem. Pharmacol. 17:1997–1998 (1968).

    Article  PubMed  CAS  Google Scholar 

  31. M. Goodall and N. Kirshner, Biosynthesis of adrenaline and noradrenaline in vitro, J. Biol. Chem. 226:213–221 (1957).

    PubMed  CAS  Google Scholar 

  32. S. Udenfriend and J. B. Wyngaarden, Precursors of adrenal epinephrine and norepinephrine in vivo, Biochim. Biophys. Acta 20(1):48–52 (1956).

    Article  PubMed  CAS  Google Scholar 

  33. G. Rosenfeld, L. C. Leeper, and S. Udenfriend, Biosynthesis of norepinephrine and epinephrine by the isolated perfused calf adrenal, Arch. Biochem. Biophys. 74(1):252–265 (1958).

    Article  PubMed  CAS  Google Scholar 

  34. M. Goodall and N. Kirshner, Biosynthesis of epinephrine and norepinephrine by sympathetic nerves and ganglia, Circulation 17:366–371 (1958).

    Article  PubMed  CAS  Google Scholar 

  35. H. Blaschko, The specific action of L-dopa decarboxylase, J. Physiol. 96:50–51 (1939).

    CAS  Google Scholar 

  36. A. Yuwiler, E. Geller, and S. Eiduson, Studies on 5-hydroxytryptophan decarboxylase. I. In vitro inhibition and substrate interaction, Arch. Biochem. 80:162–173 (1959).

    Article  CAS  Google Scholar 

  37. E. Rosengren, Are dihydroxyphenylalanine decarboxylase and 5-hydroxytryptophan decarboxylase individual enzymes? Acta Physiol. Scand. 49(4):364–369 (1960).

    Article  PubMed  CAS  Google Scholar 

  38. W. Lovenberg, H. Weissbach, and S. Udenfriend, Aromatic L-amino acid decarboxylase, J. Biol. Chem. 237(1):89–93 (1962).

    PubMed  CAS  Google Scholar 

  39. R. W. Schayer and O. H. Ganley, Adaptive increase in mammalian histidine decarboxylase activity in response to nonspecific stress, Am. J. Physiol. 197(3):721–724 (1959).

    PubMed  CAS  Google Scholar 

  40. G. Kahlson, E. Rosengren, D. Svahn, and R. Thunberg, Mobilization and formation of histamine in the gastric mucosa as related to acid secretion, Am. J. Physiol. 174(3):400–416 (1964).

    CAS  Google Scholar 

  41. J. Rosenthal, B. M. Guiarard, G. W. Chang, and E. E. Snell, Purification and properties of histidine decarboxylase from lactobacillus 30a, Proc. Nat. Acad. Sci. U.S.A. 54(1):152–158 (1965).

    Article  Google Scholar 

  42. I. C. Gunsalus, W. D. Bellamy, and W. W. Umbreit, Phosphorylated derivative of pyridoxal as the coenzyme of tyrosine decarboxylase, J. Biol. Chem. 155(2):685–686 (1944).

    CAS  Google Scholar 

  43. D. Heyl, E. Luz, S. A. Harris, and K. Folkers, Phosphates of the vitamin B6 group. I. The structure of codecarboxylase, J. Am. Chem. Soc. 73:3430–3433 (1951).

    Article  CAS  Google Scholar 

  44. A. M. Rothschild and R. W. Schayer, Characterization of histidine decarboxylase from rat peritoneal fluid mast cells, Biochim. Biophys. Acta 34:392–398 (1959).

    Article  PubMed  CAS  Google Scholar 

  45. J. Awapara, R. P. Sandman, and C. Hanley, Activation of dopa decarboxylase by pyridoxal phosphate, Arch. Biochem. 98:520–525 (1962).

    Article  PubMed  CAS  Google Scholar 

  46. S. Ono and P. Hagen, Pyridoxal phosphate: a coenzyme for histidine decarboxylase, Nature 184:1143–1144 (1959).

    Article  PubMed  CAS  Google Scholar 

  47. R. Håkanson, Mammalian histidine decarboxylase: Interaction between apoenzyme and pyridoxal-5′-phosphate, Europ. J. Pharmacol. 1:(5):383–390 (1967).

    Article  Google Scholar 

  48. S. Udenfriend, Amino acid decarboxylation step in the biosynthesis of norepinephrine, serotonin and histamine, Vitamins and Hormones 22:445–450 (1964).

    Article  PubMed  CAS  Google Scholar 

  49. W. T. Jenkins, P. A. Yphantis, and J. W. Sizer, Glutamic-aspartic transaminase. I. Assay, purification and general properties, J. Biol. Chem. 234:51–57 (1959).

    PubMed  CAS  Google Scholar 

  50. A. E. Braunstein and M. M. Shemyakin, A theory of amino acid metabolic processes catalyzed by pyridoxal-dependent enzymes, Biokhimiia 18:393–111 (1953).

    Google Scholar 

  51. D. E. Metzler, M. Ikawa, and E. E. Snell, A general mechanism for vitamin B6-catalyzed reactions, J. Am. Chem. Soc. 76:648–652 (1954).

    Article  CAS  Google Scholar 

  52. E. E. Snell, Chemical structure in relation to biological activities of vitamin B6, Vitamins and Hormones 16:77–125 (1958).

    Article  PubMed  CAS  Google Scholar 

  53. V. Bonavita and V. Scardi, On the role of the 4-formyl group of the pyridoxal-5′-phosphate in the activation of apotransaminase, Experientia 14(1):7 (1958).

    Article  CAS  Google Scholar 

  54. V. Bonavita and V. Scardi, The interaction between pyridoxal-5-phosphate and arginine apodecarboxylase, Experientia 14(1):133 (1958).

    Article  PubMed  CAS  Google Scholar 

  55. E. H. Fischer, A. B. Kent, E. R. Snyder, and E. G. Krebs, The reaction of sodium borohydride with muscle Phosphorylase, J. Am. Chem. Soc. 80(11):2906–2907 (1958).

    Article  CAS  Google Scholar 

  56. R. C. Hughes, W. T. Jenkins, and E. H. Fischer, The site of binding of pyridoxal-5′-phos-phate to heart glutamic-aspartic transaminase, Proc. Nat. Acad. Sci. U.S.A. 48(9): 1615–1618 (1962).

    Article  CAS  Google Scholar 

  57. R. Håkanson, Pyridoxal-5′-phosphate enzymes. Influence of substrate concentration on the pH optimum of enzyme reactions involving transaldimination, Z. Physiol. Chemie 348(12):1730–1733 (1967).

    Google Scholar 

  58. W. P. Jencks and E. Cordes, in Chemical and Biological Aspects of Pyridoxal Catalysis (E. E. Snell, P. M. Fasella, A. Braunstein, and A. Rossi Fanelli, eds.), pp. 57–67, Pergamon Press, Oxford (1963).

    Google Scholar 

  59. T. P. Waalkes and S. Udenfriend, A fluorometric method for the estimation of tyrosine in plasma and tissues, J. Lab. Clin. Med. 50(5):733–736 (1957).

    PubMed  CAS  Google Scholar 

  60. S. Hess and S. Udenfriend, A fluorometric procedure for the measurement of tryptamine in tissues, J. Pharmacol. Exp. Therap. 127:175–177 (1959).

    CAS  Google Scholar 

  61. P. A. Shore, A. Burkhalter, and V. H. Cohn, A method for the fluorometric assay of histamine in tissues, J. Pharmacol. Exp. Therap. 127:182–186 (1959).

    CAS  Google Scholar 

  62. A. Carlsson and B. Waldeck, A fluorometric method for the determination of dopamine (3-hydroxytyramine), Acta Physiol. Scand. 44:293–298 (1958).

    Article  PubMed  CAS  Google Scholar 

  63. R. W. Schayer, Formation and binding of histamine by rat tissues in vitro, Am. J. Physiol. 187:63–65(1956).

    PubMed  CAS  Google Scholar 

  64. G. Kahlson, E. Rosengren, H. Westling, and T. White, The site of increased formation of histamine in the pregnant rat, J. Physiol. 144(3):337–348 (1958).

    PubMed  CAS  Google Scholar 

  65. H. Weissbach, W. King, A. Sjoerdsma, and S. Udenfriend, Formation of indole-3-acetic acid and tryptamine in animals, A method for estimation of indole-3-acetic acid in tissues, J. Biol. Chem. 234:81–86 (1959).

    PubMed  CAS  Google Scholar 

  66. Y. Kobayashi, Determination of histidine decarboxylase activity by liquid scintillation counting of C14O2, Anal. Biochem. 5:284–290 (1963).

    Article  PubMed  CAS  Google Scholar 

  67. S. Snyder and J. Axelrod, Inhibition of histamine methylation in vivo by drugs, Biochem. Pharmacol. 13(5):805–808 (1964).

    Article  PubMed  CAS  Google Scholar 

  68. D. Aures and W. G. Clark, A rotating diffusion chamber for C14O2 determination as applied to inhibitor studies on mouse mast cell tumor histidine decarboxylase, Anal. Biochem. 9:35–41 (1964).

    Article  PubMed  CAS  Google Scholar 

  69. R. E. McCaman, M. W. McCaman, J. M. Hunt, and M. S. Smith, Microdetermination of monoamine oxidase and 5-hydroxytryptophan decarboxylase activities in nervous tissues, J. Neurochem. 12(1):15–24 (1965).

    Article  PubMed  CAS  Google Scholar 

  70. R. Håkanson, Radiometric micromethods for the study of some amino acid decarboxylases, Acta Pharmacol Toxicol. 24(2–3):217–231 (1966).

    Google Scholar 

  71. R. W. Schayer, in Methods of Biochemical Analysis (David Glick, ed.), Vol. 16, pp. 273–291, Interscience (Wiley) New York, London (1968).

    Chapter  Google Scholar 

  72. R. Kuntzman, P. A. Shore, D. F. Bogdanski, and B. B. Brodie, Microanalytical procedures for fluorometric assay of brain dopa-5HTP decarboxylase, norepinephrine and serotonin and a detailed mapping of decarboxylase activity in brain, J. Neurochem. 6(3):226–232 (1961).

    Article  CAS  Google Scholar 

  73. Å. Bertler and E. Rosengren, On the distribution in brain of monoamines and of enzymes responsible for their formation, Experientia 15(10):382–383 (1959).

    Article  PubMed  CAS  Google Scholar 

  74. M. Mirolli, Advantages of n-heptanol in the extraction of 5-hydroxytryptamine (5-HT), Experientia 22(12):788 (1966).

    Article  CAS  Google Scholar 

  75. D. Aures, R. Håkanson, and A. Schauer, Histidine decarboxylase and dopa decarboxylase in the rat stomach. Properties and cellular localization, Europ. J. Pharmacol. 3(3):217–234 (1968).

    Article  CAS  Google Scholar 

  76. N. G. Waton, Studies on mammalian histidine decarboxylase, Brit. J. Pharmacol. 11(2):119–127 (1956).

    PubMed  CAS  Google Scholar 

  77. N. G. Waton, Histamine as an impurity in samples of histidine, J. Pharm. Pharmacol. 15:574–578(1963).

    Article  PubMed  CAS  Google Scholar 

  78. R. Håkanson, Histidine decarboxylase in the fetal rat, Biochem. Pharmacol. 12(11):1289–1296 (1963).

    Article  Google Scholar 

  79. A. Burkhalter, The formation of histamine by fetal rat liver, Biochem. Pharmacol. 11:1–8 (1962).

    Article  Google Scholar 

  80. T. O. Turner and S. L. Wightman, Ortho-phthalaldehyde as a spray reagent for thin layer chromatograms, J. Chromatog. 32(1):315–322 (1968).

    CAS  Google Scholar 

  81. D. Aures, R. Fleming, and R. Håkanson, Separation and detection of biogenic amines by thin layer chromatography. Micro-analysis of tissue amines and of enzyme involved in their metabolism, J. Chromatog. 33(3,4):480–493 (1968).

    CAS  Google Scholar 

  82. J. J. Pisano, J. B. Wilson, L. Cohen, D. Abraham, and S. Udenfriend, Isolation of γ-amino-butyrylhistidine (homocarnosine) in brain, J. Biol. Chenu 236(2):499–502 (1961).

    CAS  Google Scholar 

  83. V. H. Cohn and P. A. Shore, A microfluorometric method for the determination of agmatine, Anal. Biochem. 2:237–241 (1961).

    Article  PubMed  CAS  Google Scholar 

  84. S. Udenfriend, Fluorescence Assay in Biology and Medicine, Academic Press, New York, London (1962).

    Google Scholar 

  85. L. T. Kremzner and C. C. Pfeiffer, Identification of substances interfering with the fluoro-metric determination of brain histamine, Biochem. Pharmacol. 15(2):197–200 (1966).

    Article  PubMed  CAS  Google Scholar 

  86. B. Elliott and J. A. Michaelson, Improved method for the fluorometric estimation of spermidine, Anal. Biochem. 19(1):184–186 (1967).

    Article  PubMed  CAS  Google Scholar 

  87. R. P. Maickell and F. P. Miller, Fluorescent products formed by reaction of indole derivatives and o-phthalaldehyde, Anal. Chem. 38(13):1937 (1967).

    Article  Google Scholar 

  88. R. W. Schayer, Histidine decarboxylase of rat stomach and other mammalian tissues, Am. J. Physiol. 189(3):533–536 (1957).

    PubMed  CAS  Google Scholar 

  89. R. J. Levine and D. E. Watts, A sensitive and specific assay for histidine decarboxylase activity, Biochem. Pharmacol. 15(7):841–849 (1966).

    Article  PubMed  CAS  Google Scholar 

  90. R. D. Smith and C. F. Code, Histamine formation, Mayo Clin. Proc. 42(2):105–111 (1967).

    PubMed  CAS  Google Scholar 

  91. F. J. Leinweber and L. A. Walker, Isotopic determination of histidine decarboxylase: a disposable assay vial, Anal. Biochem. 21(1):131–134 (1967).

    Article  PubMed  CAS  Google Scholar 

  92. J. F. Skidmore and M. W. Whitehouse, Inhibition of histamine formation catalysed by substrate-specific mammalian histidine decarboxylases. Drug antagonism of aldehyde binding to protein amino groups, Biochem. Pharmacol. 15(12):1965–1983 (1966).

    Article  PubMed  CAS  Google Scholar 

  93. G. Kahlson, Nascent histamine and methods of its estimation, Int. Physiol. Congr. Proc. 1:856–862(1962).

    CAS  Google Scholar 

  94. P. Holtz, R. Heise, and K. Ludtke, Fermentativer Abbau von 3,4-Dioxyphenylalanin (DOPA) durch Niere, Arch. Exp. Pathol. Pharmakol. 191(1):87–118 (1938).

    Article  CAS  Google Scholar 

  95. H. Blaschko, The amino acid decarboxylases of mammalian tissue, Advan. Enzymol. 5:67–85(1945).

    CAS  Google Scholar 

  96. S. Udenfriend, C. T. Clark, and S. Titus, 5-Hydroxytryptophan decarboxylase: A new route of metabolism of tryptophan, J. Am. Chem. Soc. 75(2):501–502 (1953).

    Article  CAS  Google Scholar 

  97. E. Westermann, H. Balzer, and J. Krell, Hemmung der Serotoninbildung durch α-Methyl-dopa, Arch. Exp. Pathol. Pharmakol. 234:194–205 (1958).

    CAS  Google Scholar 

  98. E. Werle and D. Aures, Ueber die Reinigungen und Spezifität der Dopa-decarboxylase, Z. Physiol. Chem. 316(1–2):45–60 (1959).

    Article  CAS  Google Scholar 

  99. J. Awapara, T. L. Perry, C. Hanley, and E. Peck, Substrate specificity of dopa decarboxylase, Clin. Chim. Acta 10(3):286–289 (1964).

    Article  PubMed  CAS  Google Scholar 

  100. P. Hagen, Observations on the substrate specificity of dopa decarboxylase from ox adrenal medulla, human phaeochromocytoma and human argentaffinoma, Brit. J. Pharmacol. 18(1):175–182 (1962).

    PubMed  CAS  Google Scholar 

  101. J. H. Fellman, Purification and properties of adrenal 1-dopa decarboxylase, Enzymologia 20:366–376(1959).

    PubMed  CAS  Google Scholar 

  102. T. L. Sourkes, Inhibition of dihydroxyphenylalanine decarboxylase by derivatives of phenylalanine, Arch. Biochem. Biophys. 51(2):444–456 (1954).

    Article  PubMed  CAS  Google Scholar 

  103. S. E. Smith, The pharmacological actions of 3,4-dihydroxyphenyl-α-methylalanine (α-methyldopa), an inhibitor of 5-hydroxytryptophan decarboxylase, Brit. J. Pharmacol. 15(2):319–327 (1960).

    PubMed  CAS  Google Scholar 

  104. D. Mackay and D. M. Shepherd, A study of potential histidine decarboxylase inhibitors, Brit. J. Pharmacol. 15(2):552–556 (1960).

    PubMed  CAS  Google Scholar 

  105. V. Erspamer, A. Glasser, C. Pasini, and G. Stoppari, In vitro decarboxylation of tryptophans by mammalian decarboxylase, Nature 189:483 (1961).

    Article  PubMed  CAS  Google Scholar 

  106. R. Ferrini and A. Glasser, In vitro decarboxylation of new phenylalanine derivatives, Biochem. Pharmacol. 13:798–801 (1964).

    Article  PubMed  CAS  Google Scholar 

  107. P. O. Ganrot, A. M. Rosengren, and E. Rosengren, On the presence of different histidine decarboxylating enzymes in mammalian tissues, Experientia 17:263 (1961).

    Article  PubMed  CAS  Google Scholar 

  108. H. Weissbach, W. Lovenberg, and S. Udenfriend, Characteristics of mammalian histidine decarboxylating enzymes, Biochim. Biophys. Acta 50(1):177–179 (1961).

    Article  PubMed  CAS  Google Scholar 

  109. R. Håkanson, Histidine decarboxylase in the bone marrow of the rat, Experientia 20(4):205–206 (1964).

    Article  PubMed  Google Scholar 

  110. R. Håkanson, Histidine decarboxylase in experimental tumors, J. Pharm. Pharmacol. 18:769–774(1966).

    Article  PubMed  Google Scholar 

  111. D. Aures and W. W. Noll, Specific histidine decarboxylase from different mammalian tissues, Fed. Proc. 25(2) Part 1:291 (1966).

    Google Scholar 

  112. W. W. Noll, Some properties of mouse mastocytoma histidine decarboxylase, Thesis, Yale University School of Medicine, New Haven. 30 p. (1966).

    Google Scholar 

  113. R. Håkanson and Ch. Owman, Distribution and properties of amino acid decarboxylases in gastric mucosa, Biochem. Pharmacol. 15:489–499 (1966).

    Article  PubMed  Google Scholar 

  114. R. Håkanson, Histamine-forming isoenzymes in the fetal and adult mouse, Europ. J. Pharmacol. 1(1):34–41 (1967).

    Article  Google Scholar 

  115. R. Håkanson, Kinetic properties of mammalian histidine decarboxylase, Europ. J. Pharmacol. 1(1):42–46(1967).

    Article  Google Scholar 

  116. D. Aures, G. Winqvist, and E. Hansson, Histamine formation in the blood and bone marrow of the guinea pig, Am. J. Physiol. 208(1):186–189 (1965).

    PubMed  CAS  Google Scholar 

  117. H. Schievelbein and E. Werle, Aminosäuredecarboxylasen und verwandte Aminosäure-lysen, in Handbuch der Physiologisch-und Pathologischen Analyse, Vol. VI C:503–607 (Hoppe-Seyler/Thierfelder, eds.), Springer-Verlag, Berlin, Heidelberg, New York (1966).

    Google Scholar 

  118. D. Aures, To be published.

    Google Scholar 

  119. E. Werle and W. Lorenz, Histamin und Histidin-decarboxylasen in Schilddrüse und Thymus, Biochem. Pharmacol. 15(8):1059–1070 (1966).

    Article  PubMed  CAS  Google Scholar 

  120. R. HÃ¥kanson and L. Josefsson, To be published.

    Google Scholar 

  121. D. Aures, To be published.

    Google Scholar 

  122. P. Holtz and E. Westermann, Über die Dopa-decarboxylase und Histidindecarboxylase des Nervengewebes, Arch. Exp. Pathol. Pharmakol. 227:538–546 (1956).

    CAS  Google Scholar 

  123. E. Werle and A. Schauer, Histamin in Nerven, Z. Exp. Med. 127:16–21 (1956).

    Article  CAS  Google Scholar 

  124. T. White, Formation and catabolism of histamine in brain tissue in vitro, J. Physiol. 149:34–42 (1959).

    PubMed  CAS  Google Scholar 

  125. B. N. Halpern, Th. Neven, and C. W. M. Wilson, The distribution and fate of radioactive histamine in the rat, J. Physiol. 147(4):437–449 (1959).

    PubMed  CAS  Google Scholar 

  126. E. Robins, J. M. Robins, A. B. Croninger, S. G. Moses, S. J. Spencer, and R. W. Hudgens, The low level of 5-hydroxytryptophan decarboxylase in human brain, Biochem. Med. 1(3):240–251 (1967).

    Article  CAS  Google Scholar 

  127. G. R. Pscheidt and B. Haber, Regional distribution of dihydroxyphenylalanine and 5-hydroxytryptophan decarboxylase and of biogenic amines in the chicken, J. Neurochem. 12(7):613–618 (1965).

    Article  PubMed  CAS  Google Scholar 

  128. R. E. McCaman and M. H. Aprison, The synthetic and catabolic enzyme systems for acetylcholine and serotonin in several discrete areas of the developing rabbit brain, Prog. Brain Res. 9:220–233 (1964).

    Article  Google Scholar 

  129. Å. Bertler, B. Falck, and E. Rosengren, The direct demonstration of a barrier mechanism in the brain capillaries, Acta Pharmacol. 20(4):317–321 (1964).

    Article  Google Scholar 

  130. Å. Bertler, B. Falck, Ch. Owman, and E. Rosengren, The localization of monoaminergic blood-brain barrier mechanisms, Pharmacol. Rev. 18(1):369–385 (1966).

    PubMed  CAS  Google Scholar 

  131. Ch. Owman and E. Rosengren, Dopamine formation in brain capillaries—an enzymic blood-brain barrier mechanism, J. Neurochem. 14(5):547–550 (1967).

    Article  PubMed  CAS  Google Scholar 

  132. J. Constantinidis, G. Bartholini, R. Tissot, and A. Pletscher, Accumulation of dopamine in the parenchyma after decarboxylase inhibition in the capillaries of brain, Experientia 24(2):130–131 (1968).

    Article  PubMed  CAS  Google Scholar 

  133. G. Bartholini, W. P. Burkhard, A. Pletscher, and H. M. Bates, Increase of cerebral catecholamines caused by 3,4-dihydroxyphenylalanine after inhibition of peripheral decarboxylase, Nature 215(5103):852 (1967).

    Article  PubMed  CAS  Google Scholar 

  134. S. Udenfriend, in Mechanisms of Release of Biogenic Amines (U. S. von Euler, S. Roseli, and B. Üvnas, eds.), pp. 103–108, Pergamon Press, London, New York (1966).

    Google Scholar 

  135. A. Heller, L. S. Seiden, W. Porcher, and R. Y. Moore, 5-Hydroxytryptophan decarboxylase in rat brain: effect of hypothalmic lesions, Science 147(3660):887–888 (1965).

    Article  PubMed  CAS  Google Scholar 

  136. N. J. Giarman and M. Day, Presence of biogenic amines in the bovine pineal body, Biochem. Pharmacol. 1(3):235 (1958).

    Article  Google Scholar 

  137. N. J. Giarman, D. X. Freedman, and L. Picard-Ami, Serotonin content of the pineal glands of man and monkey, Nature 186(4723):480–481 (1960).

    Article  PubMed  CAS  Google Scholar 

  138. N. Prop and J. Ariends-Kappers, Demonstration of some compounds present in the pineal organ of the albino rat by histochemical methods and paper chromatography, Acta Anat. 45(1–2):90–109 (1961).

    Article  PubMed  CAS  Google Scholar 

  139. W. B. Quay and A. Halevy, Experimental modification of the rat pineal content of serotonin and related indole amines, Physiol. Zool. 35(1): 1–7 (1962).

    CAS  Google Scholar 

  140. R. Håkanson and Ch. Owman, Effect of denervation and enzyme inhibition on dopa decarboxylase and monoamine oxidase activity of rat pineal gland, J. Neurochem. 12:417–429(1965).

    Article  Google Scholar 

  141. R. Håkanson and Ch. Owman, Pineal dopa decarboxylase and monoamine oxidase activities as related to the monoamine stores, J. Neurochem. 13:597–605 (1966).

    Article  PubMed  Google Scholar 

  142. P. A. Srere, Enzyme concentration in tissues, Science 158(3803):936–937 (1967).

    Article  PubMed  CAS  Google Scholar 

  143. W. G. Clark, in Metabolic Inhibitors (R. M. Hoechster and J. H. Quastel, eds.), Vol. 1, pp. 315–381, Academic Press, New York (1963).

    Chapter  Google Scholar 

  144. T. L. Sourkes and A. D’Iorio, in Metabolic Inhibitors (R. M. Hoechster and J. H. Quastel, eds.), Vol. II, pp. 79–98, Academic Press, New York (1963).

    Chapter  Google Scholar 

  145. D. M. Shepherd and D. Mackay, in Progress in Medicinal Chemistry (G. P. Ellis and G. B. West, eds.), Vol. V, pp. 199–250, Plenum Press, New York (1967).

    Google Scholar 

  146. W. G. Clark, Studies on inhibition of 1-dopa decarboxylase in vitro and in vivo, Pharmacol. Rev. 11:330–349 (1959).

    PubMed  CAS  Google Scholar 

  147. R. W. Schayer, in Handbook of Experimental Pharmacology (O. Eichler and A. Farah, eds.), Vol. 18, Part 1, pp. 688–725, Springer-Verlag, Berlin (1966).

    Google Scholar 

  148. A. Pletscher, K. F. Gey, and W. P. Burkhard, in Handbook of Experimental Pharmacology (O. Eichler, A. Farah, and V. Erspamer, eds.), Vol. 19, pp. 592–635, Springer-Verlag, New York (1966).

    Google Scholar 

  149. R. J. Levine, T. L. Sato, and A. Sjoerdsma, Inhibition of histamine synthesis in the rat by α-hydrazino analog of histidine and 4-bromo-3-hydroxybenzyloxyamine, Biochem. Pharmacol. 14(2): 139–150 (1965).

    Article  PubMed  CAS  Google Scholar 

  150. C. F. Code, Histamine and gastric secretion: a later look, 1955–1965, Fed. Proc. 24(6):1311–1321 (1965).

    PubMed  CAS  Google Scholar 

  151. R. J. Levine, Effect of histidine decarboxylase inhibition on gastric acid secretion in the rat, Fed. Proc. 24(6): 1331–1333 (1965).

    PubMed  CAS  Google Scholar 

  152. R. J. Levine, Histamine synthesis in man: Inhibition by 4-bromo-3-hydroxybenzyl-oxyamine, Science 154(3752):1017–1019 (1966).

    Article  PubMed  CAS  Google Scholar 

  153. A. Nikulin, P. Stern, and Z. Zeger-Vidovic, Die Beteutung des Histamins im Entzündungsprozess, Arch. Int. Pharmacodyn. Ther. 166(2):305–312 (1967).

    PubMed  CAS  Google Scholar 

  154. F. J. Leinweber, Mechanism of histidine decarboxylase inhibition by NSD-1055 and related hydroxylamines, Mol. Pharmacol. 4:337–348 (1968).

    PubMed  CAS  Google Scholar 

  155. D. Aures, L. E. A. Rodrigues, and S. F. Laws, To be published.

    Google Scholar 

  156. H. F. Schott and W. G. Clark, Dopa decarboxylase inhibition through the interaction of coenzyme and substrate, J. Biol. Chem. 196(1):449–462 (1952).

    PubMed  CAS  Google Scholar 

  157. P. Holtz and E. Westerman, Hemmung der Glutaminsäuredecarboxylase des Gehirns durch Brenzcatechinderivate, Naunyn-Schmiedeberg’s Arch. Exp. Pathol. Pharmakol. 231:311–332(1957).

    CAS  Google Scholar 

  158. J. Putter and G. Kroneberg, Untersuchungen über die Stereospezifität der decarboxylase-hemmenden Wirkung von α-methyldopa, Arch. Exp. Pathol. Pharmakol. 249(5):470–478 (1964).

    Google Scholar 

  159. A. Carlsson and M. Lindquist, In vivo decarboxylation of α-methyl dopa and α-methyl-metatyrosine, Acta Physiol. Scand. 54(1):87–94 (1962).

    Article  PubMed  CAS  Google Scholar 

  160. W. J. Hartman, R. J. Akawie, and W. G. Clark, Competitive inhibition of 3,4-dihy-droxyphenylalanine (dopa) decarboxylase in vitro, J. Biol. Chem. 216(2):507–529 (1955).

    PubMed  CAS  Google Scholar 

  161. B. Robinson and D. M. Shepherd, The inhibition of the 1-histidine decarboxylases of guinea-pig kidney and rat hepatoma, J. Pharmacol. 14(1):9–15 (1962).

    Article  CAS  Google Scholar 

  162. G. R. Marschke and G. N. Beall, The effects of two histidine decarboxylase inhibitors in guinea pig anaphylaxis, Biochem. Pharmacol. 14(2):192–194 (1965).

    Article  PubMed  CAS  Google Scholar 

  163. K. Hempel and H. F. K. Männel, Inhibition of tyrosine degradation in vivo by the dopa decarboxylase blocking agent NSD-1034, Experientia 24(5):429–430 (1968).

    Article  PubMed  CAS  Google Scholar 

  164. J. F. Moran and T. L. Sourkes, Multiple inhibitory effects of α-methylamino acid on the metabolism of Cl4-labeled tyrosine, dopa and α-methyldopa, J. Pharmacol. Exp. Therap. 148(2):252–261 (1965).

    CAS  Google Scholar 

  165. A. Pletscher and K. F. Gey, The effect of a new decarboxylase inhibitor on endogenous and exogenous monoamines, Biochem. Pharmacol. 12:223–228 (1963).

    Article  PubMed  CAS  Google Scholar 

  166. G. E. Johnson and K. Pritzker, The influence of the dopa decarboxylase inhibitor Ro4–4602 on the urinary excretion of catecholamines in cold stressed rats, J. Pharmacol. Exp. Therap. 152(3):432–438 (1966).

    CAS  Google Scholar 

  167. J. V. Hodge, J. A. Oates, and A. Sjoerdsma, Reduction of the central effects of tryptophan by a decarboxylase inhibitor, Clin. Pharmacol. Therap. 5(2):149–155 (1964).

    CAS  Google Scholar 

  168. E. J. Glamkowski, G. Gal, M. Sletzinger, C. C. Porter, and L. S. Watson, A new class of potent decarboxylase inhibitors, J. Med. Chem. 10:852–855 (1967).

    Article  CAS  Google Scholar 

  169. A. Parulkar, A. Burger, and D. Aures, Some nuclear-substituted derivatives of α-methyldopa, J. Med. Chem. 9(5):738–741 (1966).

    Article  PubMed  CAS  Google Scholar 

  170. S. M. Hess, R. H. Connamacher, M. Ozaki, and S. Udenfriend, Effects of α-methyldopa and α-methyl-m-tyrosine on metabolism of norepinephrine and serotonin in vivo, J. Pharmacol. Exp. Therap. 134(2): 129–138 (1961).

    CAS  Google Scholar 

  171. C. C. Porter, J. A. Totaro, and C. M. Leiby, Some biochemical effects of α-methyl-3,4-dihydroxyphenylalanine and related compounds in mice, J. Pharmacol. Exp. Therap. 134(2):139–145 (1961).

    CAS  Google Scholar 

  172. T. L. Sourkes, The action of alpha-methyldopa on the brain, Brit. Med. Bull. 21(1):66–69 (1965).

    CAS  Google Scholar 

  173. C. C. Porter, J. A. Totaro, and A. Burcin, The relationship between radioactivity and norepinephrine concentrations in the brains and hearts of mice following administration of labeled methyldopa or 6-hydroxydopamine, J. Pharmacol. Exp. Therap. 150(1): 17–22 (1965).

    CAS  Google Scholar 

  174. R. Lindman and E. Muscholl, α-Methylnoradrenalin in das isolierte Kaninchenherz und seine Freisetzung durch Reserpin und Guanethidin in vivo, Arch. Exp. Pathol. Pharmakol. 249(6):529–548 (1965).

    Google Scholar 

  175. N. E. Andén, On the mechanism of noradrenaline depletion by α-methyl metatyrosine and metaraminol, Acta Pharmacol. Toxicol. 21(3):260–271 (1964).

    Article  Google Scholar 

  176. R. Imaizumi, M. Oka, and T. Ohuche, Mechanism of the antihypertensive effect of α-methyldopa, Nature 203(4948):982 (1964).

    Article  PubMed  CAS  Google Scholar 

  177. C. A. Stone and C. C. Porter, in Advances in Drug Research (N. J. Harper and A. Simmond, eds.), Vol. 4, pp. 71–93, Academic Press, New York (1967).

    Google Scholar 

  178. W. G. Burkard, K. F. Gey, and A. Pletscher, Inhibition of the hydroxylation of tryptophan and phenylalanine by methyldopa and similar compounds, Life Sci. 3(5):27–33 (1964).

    Article  PubMed  CAS  Google Scholar 

  179. B. E. Roos and B. Werdenius, The effect of methyldopa on the metabolism of 5-hydroxy-tryptamine in brain, Life Svi. 2:92–96 (1963).

    Article  CAS  Google Scholar 

  180. T. Nagatsu, M. Levitt, and S. Udenfriend, The initial step in norepinephrine biosynthesis, J. Biol. Chem. 239(9):2910–2917 (1964).

    PubMed  CAS  Google Scholar 

  181. C.R. Creveling, J. W. Daly, B. Witkop, and S. Udenfriend, Substrates and inhibitors of dopamine β-oxidase, Biochim. Biophys. Acta 64(1): 125–134 (1962).

    Article  PubMed  CAS  Google Scholar 

  182. E. Muscholl and L. Maitre, Release by sympathetic stimulation of α-methylnoradrenaline stored in the heart after administration of α-methyldopa, Experientia 19(12):658–659 (1963).

    Article  PubMed  CAS  Google Scholar 

  183. R. Lindmar, E. Muscholl, and K. H. Rahn, Effects of rest and physical activity on the urinary excretion of noradrenaline and α-methylnoradrenaline in human subjects treated with α-methyldopa, Europ. J. Pharmacol. 2(4):317–319 (1968).

    Article  CAS  Google Scholar 

  184. W. Haeffely, A. Hurlimann, and H. Thoenen, Adrenergic transmitter changes and response to sympathetic nerve stimulation after differing pretreatment with α-methyldopa, Brit. J. Pharmacol. 31:105–119 (1967).

    Google Scholar 

  185. M. D. Day and M. J. Rand, Some observations on the pharmacology of α-methyldopa, Brit. J. Pharmacol 22(1):72–85 (1964).

    PubMed  CAS  Google Scholar 

  186. A. Carlsson, A. Dahlström, K. Fuxe, and H. Å. Hillarp, Failure of reserpine to deplete noradrenaline neurons of α-methylnoradrenaline formed from α-methyldopa, Acta Pharmacol. Toxicol. 22(3):270–276 (1965).

    Article  CAS  Google Scholar 

  187. J. Axelrod and R. Tomshick, Enzymatic o-methylation of epinephrine and other catechols, J. Biol. Chem. 233(3):702–705 (1958).

    PubMed  CAS  Google Scholar 

  188. K. Stock and E. Westermann, Effect of α-methyldopa and α-methyl-m-tyrosine on the mobilization of free fatty acids, Experientia 20(9):495–496 (1964).

    Article  PubMed  CAS  Google Scholar 

  189. E. Westermann and K. Stock, Wirkung von α-methyldopa und α-methyl-m-tyrosine auf den Fettstoffwechsel der Ratte, Arch. Exp. Pathol. Pharmakol 247(4):299–300 (1964).

    Article  Google Scholar 

  190. W. G. Clark and R. S. Pogrund, Inhibition of dopa decarboxylase in vitro and in vivo, Circulation Res. 9:721–733 (1961).

    Article  CAS  Google Scholar 

  191. J. Cahn, M. Herold, C. Helbecque, T. Lasjuamias, and A. M. Juillard, Effects comparés de différents inhibiteurs de la l-dopa décarboxylase chez le rat et la souris, Compt. Rend. Soc. Biol. (Paris) 156(6): 1094–1096 (1962).

    CAS  Google Scholar 

  192. M. Herold, J. Cahn, C. Helbecque, T. Lasjaumias, and A. M. Juillard, Action de quelques inhibiteurs de la l-dopa décarboxylase sur la durée de la narcose barbiturique chez la souris, Compt. Rend. Soc. Biol. (Paris) 156(7):1270–1272 (1962).

    CAS  Google Scholar 

  193. T. L. Perry, Urinary excretion of amines in phenylketonuria and mongolism, Science 136:879–880(1962).

    Article  PubMed  CAS  Google Scholar 

  194. A. N. Davison and M. Sandler, Inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites, Nature 181:186–187 (1958).

    Article  PubMed  CAS  Google Scholar 

  195. A. Yuwiler and R. T. Louttit, Effects of phenylalanine diet on brain serotonin in the rat, Science 134:831–832 (1961).

    Article  PubMed  CAS  Google Scholar 

  196. R. C. Baldridge and V. H. Auerbach, The metabolism of histidine: VI. Histidemia and imidazolepyruvic aciduria, J. Biol. Chem. 239(5): 1557–1559 (1964).

    PubMed  CAS  Google Scholar 

  197. S. H. Snyder, P. Myron, M. W. Kies, and S. Berlow, Metabolism of 2-C14-labeled l-histidine in histidinemia, J. Clin. Endocr. 23(6):595–597 (1963).

    Article  PubMed  CAS  Google Scholar 

  198. D. W. Wooley, The Biochemical Basis of Psychosis, Wiley, New York (1962).

    Google Scholar 

  199. G. Bruce and G. R. Pscheidt, Correlations between behavior and urinary excretion of indole amines and catecholamines in schizophrenic patients as affected by drugs, Fed. Proc. 20(4):889–893 (1961).

    Google Scholar 

  200. O. Hornykiewicz, Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin in der Substantia nigra des Normalen und parkinsonkranken Menschen, Wien. Klin. Wochschr. 75(18):309–312 (1963).

    CAS  Google Scholar 

  201. O. Hornykiewicz, Dopamine (3-hydroxytryamine) and brain function, Pharmacol. Rev. 18:925–964(1966).

    PubMed  CAS  Google Scholar 

  202. B. Elefteriou and R. L. Church, Brain 5-hydroxytryptophan decarboxylase in mice after exposure to aggression and defeat, Physiol. Behav. 3:323–325 (1968).

    Article  Google Scholar 

  203. A. B. Rothballer, in Aggression and Defense. Neural Mechanisms and Social Patterns (C. demente and D. B. Lindsley, eds), Brain Function 5:135–170 (1967), Univ. Calif. Press, Berkeley and Los Angeles.

    Google Scholar 

  204. J. J. Schildkraut and S. S. Kety, Biogenic amines and emotion, Science 156(3771):21–30 (1967).

    Article  PubMed  CAS  Google Scholar 

  205. S. S. Kety and F. E. Samson, Jr. (eds.), Neural properties of the biogenic amines, Neurosci. Res. Program Bull. 5(1):1–119 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Aures, D., HÃ¥kanson, R., Clark, W.G. (1970). Histidine Decarboxylase and Dopa Decarboxylase. In: Lajtha, A. (eds) Control Mechanisms in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7163-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7163-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7165-0

  • Online ISBN: 978-1-4615-7163-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics