Skip to main content

Control of Carbohydrate Metabolism

  • Chapter
Control Mechanisms in the Nervous System
  • 115 Accesses

Abstract

The brain as a tissue is distinguished from other tissues of the body by its relatively high metabolic rate, its almost complete dependence on carbohydrates for its sources of energy, and its capacity to respond rapidly and transiently to a requirement for increased energy expenditure when its electrically excitable cells are caused to fire. The tissue comprises about 3% of the total body weight, yet it utilizes something of the order of 25% of the total bodily consumption of glucose. The metabolic rate may be as high as 20 times the average for the body as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. McIlwain, Biochemistry and the Central Nervous System, 3rd ed., Churchill, London (1966).

    Google Scholar 

  2. S. E. Kerr and M. Ghantus, The carbohydrate metabolism of brain. III: On the origin of lactic acid, J. Biol. Chem. 117:217–225 (1937).

    CAS  Google Scholar 

  3. O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30 (1964).

    PubMed  CAS  Google Scholar 

  4. H. A. Krebs and M. Woodford, Fructose 1,6-diphosphate in striated muscle, Biochem. J. 94:436–445 (1965).

    PubMed  CAS  Google Scholar 

  5. W. Sacks, Cerebral metabolism of isotopic glucose in normal human subjects, J. Appl. Physiol. 10:37–44 (1957).

    PubMed  CAS  Google Scholar 

  6. F. C. G. Hoskin, Effect of inhibitors on the metabolism of specifically labelled glucose by brain, Biochim. Biophys. Acta 40:309–313 (1960).

    Article  PubMed  CAS  Google Scholar 

  7. H. S. Bachelard and H. Mcllwain, in Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 17, Chapter 6, Elsevier, Amsterdam., pps. 191–218 (1969).

    Google Scholar 

  8. O. H. Lowry and J. V. Passonneau, The relationship between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–42 (1964).

    PubMed  CAS  Google Scholar 

  9. H. S. Bachelard, The sub-cellular distribution and properties of hexokinases in the guinea-pig cerebral cortex, Biochem. J. 104:286–292 (1967).

    PubMed  CAS  Google Scholar 

  10. N. Robinson and B. M. Phillips, Glycolytic enzymes in human brain, Biochem. J. 92:254–259 (1964).

    PubMed  CAS  Google Scholar 

  11. R. H. Laatsch, Glycerol phosphate dehydrogenase activity of developing rat central nervous system, J. Neurochem. 9:487–492 (1962).

    Article  PubMed  CAS  Google Scholar 

  12. R. von Fellenberg, H. Eppenberger, R. Richterich, and H. Aebi, The glycolytic enzymes from the liver, kidney, skeletal muscle, heart muscle and brain of the rat and mouse, Biochem. Z. 336:334–350 (1962).

    CAS  Google Scholar 

  13. T. Wood, The purification of enolase from cerebral tissue, Biochem. J. 91:453–460 (1964).

    PubMed  CAS  Google Scholar 

  14. J. J. O’Neill, S. H. Simon, and W. W. Shreeve, Alternate glycolytic pathways in brain, A comparison between the action of artificial electron acceptors and electrical stimulation, J. Neurochem. 12:797–802 (1965).

    Article  Google Scholar 

  15. H. S. Bachelard, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 1, Part 1, Chapter 2, Plenum Press, New York, pp. 25–31 (1969).

    Google Scholar 

  16. R. Balázs, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 3, Chapter 1, Plenum Press, New York (1969).

    Google Scholar 

  17. R. V. Coxon, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 3, Chapter 2, Plenum Press, New York (1969).

    Google Scholar 

  18. H. S. Bachelard, W. J. Campbell, and H. McIlwain, The sodium and other ions of mammalian cerebral tissues, maintained and electrically stimulated in vitro, Biochem. J. 84:225–232 (1962).

    CAS  Google Scholar 

  19. H. McIlwain, Chemical Exploration of the Brain: A Study of Cerebral Excitability and Ion Movement, Elsevier, Amsterdam (1963).

    Google Scholar 

  20. A. Schwartz, H. S. Bachelard, and H. McIlwain, The sodium-stimulated adenosinetriphosphatase activity and other properties of cerebral microsomal fractions and sub-fractions, Biochem. J. 84:626–637 (1962).

    PubMed  CAS  Google Scholar 

  21. M. B. R. Gore and H. McIlwain, Effects of some inorganic salts on the metabolic response of sections of mammalian cerebral cortex to electrical stimulation, J. Physiol. 117:471–483 (1952).

    PubMed  CAS  Google Scholar 

  22. R. Whittam, Active cation transport as a pace-maker of respiration, Nature (London) 191:603–604 (1961).

    Article  CAS  Google Scholar 

  23. R. Whittam, The dependence of the respiration of brain cortex on active cation transport, Biochem. J. 82:205–212 (1962).

    PubMed  CAS  Google Scholar 

  24. M. F. Utter, The role of carbon dioxide fixation in carbohydrate utilization and synthesis, Ann. N.Y. Acad. Sci. 72:451–461 (1959).

    Article  PubMed  CAS  Google Scholar 

  25. R. J. Woodman and H. McIlwain, Glutamic acid, other amino acids and related compounds as substrates for cerebral tissues: their effect on tissue phosphates, Biochem. J. 81:83–93 (1961).

    PubMed  CAS  Google Scholar 

  26. H. F. Bradford and H. McIlwain, Ionic basis for the depolarization of cerebral tissues by excitatory acidic amino acids, J. Neurochem. 13:1163–1177 (1963).

    Article  Google Scholar 

  27. H. H. Hillman and H. McIlwain, Membrane potentials in mammalian cerebral tissues in vitro: dependence on ionic environment, J. Physiol. 157:263–278 (1961).

    PubMed  CAS  Google Scholar 

  28. P. Joanny, J. Corriol, A. Kleinzeller, and H. H. Hillman, Transport of monosaccharides into slices of guinea-pig brain cortex, Abstr. 1st Intern. Meeting, I.S.N., p. 110, Strasbourg (1967).

    Google Scholar 

  29. R. A. Fishman, Carrier transport of glucose between blood and cerebrospinal fluid, Am. J. Physiol. 206:836–844 (1964).

    PubMed  CAS  Google Scholar 

  30. C. Crone, Facilitated transfer of glucose from blood into brain tissue, J. Physiol. 181:103–113 (1965).

    PubMed  CAS  Google Scholar 

  31. J. C. Gilbert, Mechanism of sugar transport in brain slices, Nature (London) 205:87–88 (1965).

    Article  CAS  Google Scholar 

  32. P. G. Le Fevre and A. A. Peters, Evidence of mediated transfer of monosaccharides from blood to brain in rodents, J. Neurochem. 13:35–46 (1966).

    Article  Google Scholar 

  33. P. J. Randle and G. H. Smith, Regulation of glucose uptake by muscle. 2. The effects of insulin, anaerobiosis and cell poisons on the penetration of isolated rat diaphragm by sugars, Biochem. J. 70:501–508 (1958).

    PubMed  CAS  Google Scholar 

  34. H. E. Morgan, M. J. Henderson, D. M. Regen, and C. R. Park, Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats, J. Biol. Chem. 236:253–261 (1961).

    PubMed  CAS  Google Scholar 

  35. G. T. Cori and C. F. Cori, The kinetics of the enzymatic synthesis of glycogen from glucose-1-phosphate, J. Biol. Chem. 135:733–756 (1940).

    CAS  Google Scholar 

  36. B. M. Breckenridge and E. J. Crawford, Glycogen synthesis from uridine diphosphate glucose in brain, J. Biol. Chem. 235:3054–3057 (1960).

    CAS  Google Scholar 

  37. D. K. Basu and B. K. Bachhawat, Purification of uridine diphosphoglucose-glycogen transglucosylase from sheep brain, Biochim. Biophys. Acta 50:123–128 (1961).

    Article  PubMed  CAS  Google Scholar 

  38. G. T. Cori, S. P. Colowick, and C. F. Cori, The formation of glucose-1-phosphoric acid in extracts of mammalian tissues and of yeast, J. Biol. Chem. 123:375–380 (1938).

    CAS  Google Scholar 

  39. T. W. Rall and E. W. Sutherland, Adenyl cyclase. II. The enzymatically catalyzed formation of 3′5′-phosphate and inorganic pyrophosphate from adenosine triphosphate, J. Biol. Chem. 237:1228–1232 (1962).

    PubMed  CAS  Google Scholar 

  40. L. M. Klainer, Y.-M. Chi, S. L. Freidberg, T. W. Rall, and E. W. Sutherland, Adenyl cyclase. IV. The effects of neurohormones on the formation of adenosine 3′5′-phosphate by preparations from brain and other tissues, J. Biol. Chem. 237:1239–1243 (1962).

    PubMed  CAS  Google Scholar 

  41. B. M. Breckenridge and J. H. Norman, Glycogen Phosphorylase in brain, J. Neurochem. 9:383–392 (1962).

    Article  PubMed  CAS  Google Scholar 

  42. O. H. Lowry, D. W. Schulz, and J. V. Passonneau, The kinetics of glycogen phosphorylases from brain and muscle, J. Biol. Chem. 242:271–280 (1967).

    PubMed  CAS  Google Scholar 

  43. O. H. Lowry, in Nerve as a Tissue (K. Rodahl and B. Issekutz, eds.), pp. 163–174, Harper & Row, New York (1966).

    Google Scholar 

  44. J. Krivanek, Changes of brain glycogen in the spreading EEG-depression of LEAO, J. Neurochem. 2:337–343 (1958).

    Article  PubMed  CAS  Google Scholar 

  45. F. N. Le Baron, The resynthesis of glycogen by guinea pig cerebral cortex slices, Biochem. J. 61:80–85 (1955).

    Google Scholar 

  46. O. H. Lowry and J. V. Passonneau, Kinetic evidence for multiple binding sites on phosphofructokinase, J. Biol. Chem. 241:2268–2279 (1966).

    PubMed  CAS  Google Scholar 

  47. H. Tiedemann and J. Born, On the mechanism of the Pasteur reaction. The influence of phosphate ions on the activity of the structurally bound hexokinase, Z.Naturforsch. 14B:477–478 (1959).

    CAS  Google Scholar 

  48. K. Uyeda and E. Racker, Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase, J. Biol. Chem. 240:4682–4688 (1965).

    PubMed  CAS  Google Scholar 

  49. F. N. Minard and R. V. Davis, Effect of chlorpromazine, ether and phenobarbital on the active phosphate level of rat brain: an improved extraction technique for acid-soluble phosphates, Nature (London) 193:277–278 (1962).

    Article  CAS  Google Scholar 

  50. J. V. Passonneau and O. H. Lowry, P-fructokinase and the control of the citric acid cycle, Biochem. Biophys. Res. Commun. 13:372–379 (1963).

    Article  CAS  Google Scholar 

  51. N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism on the levels of citric acid cycle intermediates, J. Biol. Chem. 241:3997–4003 (1966).

    PubMed  CAS  Google Scholar 

  52. R. K. Crane and A. Sols, The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds, J. Biol. Chem. 210:597–606 (1954).

    PubMed  CAS  Google Scholar 

  53. E. A. Newsholme, F. S. Rolleston, and K. Taylor, Factors affecting the glucose-6-phosphate inhibition of the hexokinase from cerebral cortex tissue of the guinea pig, Biochem. J. 106:193–201 (1968).

    PubMed  CAS  Google Scholar 

  54. H. S. Bachelard and P. S. G. Goldfarb, Adenine nucleotides and magnesium ions in relation to control of mammalian cerebral-cortex hexokinase. Biochem. J. 112:579–586 (1969).

    PubMed  CAS  Google Scholar 

  55. H. J. Fromm and V. Zewe, Kinetic studies of the brain hexokinase reaction, J. Biol. Chem. 237:1661–1667 (1962).

    PubMed  CAS  Google Scholar 

  56. A. Sols and R. K. Crane, The inhibition of brain hexokinase by adenosine diphosphate and sulfhydryl reagents, J. Biol. Chem. 206:925–936 (1954).

    PubMed  CAS  Google Scholar 

  57. S. E. Kerr and M. Ghantus, The carbohydrate metabolism of brain. II: The effect of varying the carbohydrate and insulin supply on the glycogen, free sugar and lactic acid in mammalian brain, J. Biol. Chem. 116:9–20 (1936).

    CAS  Google Scholar 

  58. M. R. A. Chance and D. C. Yaxley, Central nervous function and changes in brain metabolite concentration. I: Glycogen and lactate in convulsing mice, J. Exptl. Biol. 27:311–323 (1950).

    CAS  Google Scholar 

  59. S. H. Carter and W. E. Stone, Effects of convulsants on brain glycogen in the mouse, J. Neurochem. 7:16–19 (1961).

    Article  PubMed  CAS  Google Scholar 

  60. N. Haugaard, M. Vaughan, E. S. Haugaard, and W. C. Stadie, Studies of radioactive injected labelled insulin, J. Biol. Chem. 208:549–563 (1954).

    PubMed  CAS  Google Scholar 

  61. O. J. Rafaelson, Studies on a direct effect of insulin on the central nervous system: a review, Metabolism 10:99–114 (1961).

    Google Scholar 

  62. W. J. H. Butterfield, M. E. Abrams, R. A. Sells, G. Sterky, and M. J. Whichelow, Insulin sensitivity of the human brain, Lancet (i) 557–560 (1966).

    Article  Google Scholar 

  63. R. V. Coxon, E. C. Gordon-Smith, and J. R. Henderson, The incorporation of isotopic carbon (14C) into the cerebral glycogen of rabbits, Biochem. J. 97: 776–781 (1965).

    PubMed  CAS  Google Scholar 

  64. D. Jacobowitz and B. H. Marks, Effect of stress on glycogen and Phosphorylase in the rat anterior pituitary, Endocrinology 75:86–88 (1964).

    Article  PubMed  CAS  Google Scholar 

  65. C.-J. Estler and H. P. T. Ammon, Phosphorylase activity and glycogen content of the brain under the influence of ethanol and adrenaline, J. Neurochem. 12:871–876 (1965).

    Article  PubMed  CAS  Google Scholar 

  66. C.-J. Estler and H. P. T. Ammon, The influence of propanolol on the methamphetamine-induced changes of cerebral function and metabolism, J. Neurochem. 14:799–805 (1967).

    Article  CAS  Google Scholar 

  67. F. N. Minard, C. H. Kang, and I. K. Mushahwar, The effect of periodic convulsions induced by 1,1-dimethylhydrazine on the glycogen of rat brain, J. Neurochem. 12:279–286 (1965).

    Article  PubMed  CAS  Google Scholar 

  68. J. R. Klein and N. S. Olsen, Effect of convulsive activity upon the concentration of brain glucose, glycogen, lactate and phosphates, J. Biol. Chem. 167:747–756 (1947).

    PubMed  CAS  Google Scholar 

  69. H. Weil-Malherbe and D. Bone, Activators and inhibitors of hexokinase in human blood, J. Mental Sci. 97:635–662 (1951).

    CAS  Google Scholar 

  70. S. P. Colowick, G. T. Cori, and M. W. Slein, The effect of adrenal cortex and anterior pituitary extracts and insulin on the hexokinase reaction, J. Biol. Chem. 168:583–596 (1947).

    PubMed  CAS  Google Scholar 

  71. J. Stern, Inhibitors and activators of brain hexokinase, Biochem. J. 58:536–542 (1954).

    PubMed  CAS  Google Scholar 

  72. O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and C. F. Cahill, Brain metabolism during fasting, J. Clin. Invest. 46:1589 (1967).

    Article  PubMed  CAS  Google Scholar 

  73. A. L. Smith, H. S. Satterthwaite, and L. Sokoloff, Induction of brain D(-)β-hydroxybutyrate dehydrogenase activity by fasting, Science 163:79 (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Bachelard, H.S. (1970). Control of Carbohydrate Metabolism. In: Lajtha, A. (eds) Control Mechanisms in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7163-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7163-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7165-0

  • Online ISBN: 978-1-4615-7163-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics