Skip to main content
  • 157 Accesses

Abstract

Exopeptidases constitute a group of hydrolytic enzymes capable of cleaving the NH2- or COOH- terminal amino acids of peptides or polypeptides. Despite the presence in brain of peptides with important physiological properties, the role of these hydrolases in peptide and protein turnover is still obscure. It is well known that brain proteins are in dynamic equilibrium with their environment, with the processes of synthesis matching those of degradation. Protein breakdown as a consequence is an orderly process in which different batteries of endo- and exopeptidases are linked together to form a degradative pathway leading to the liberation of smaller peptides or amino acids. So far only simple schemes can be postulated for the pathways of intracellular hydrolysis of proteins and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bergmann, A classification of proteolytic enzymes, Advan. Enzymol. 2:49–68 (1942).

    CAS  Google Scholar 

  2. B. Shome and M. Saffran, Peptides of the hypothalamus, J. Neurochem. 13:433–448 (1966).

    Article  CAS  Google Scholar 

  3. S. Lande, A. B. Lerner, and V. G. Upton, Pituitary peptides. Isolation of new peptides related to β-melanocyte-stimulating hormone, J. Biol. Chem. 240:4259–4263 (1965).

    PubMed  CAS  Google Scholar 

  4. Enzyme Nomenclature, Elsevier, Amsterdam (1965).

    Google Scholar 

  5. G. Gomori, Chromogenic substrates for amino peptidases, Proc. Soc. Exptl. Biol. Med. 87:559–561 (1954).

    CAS  Google Scholar 

  6. J. K. McDonald, F. H. Leibach, R. E. Grindeland, and S. Ellis, Purification of Dipeptidyl Aminopeptidases II (Dipeptidyl Arylamidase II) of the Anterior Pituitary Gland. Peptide and dipeptide esterase activities, J. Biol. Chem. 243:4143–4150 (1968).

    PubMed  CAS  Google Scholar 

  7. E. Blum, A. I. Yakovchuk, and A. I. Yarmoskevich, Proteolytic enzymes of the brain, Bull. Biol. Med. Exptl. U.R.S.S. 1:17–18 (1936).

    CAS  Google Scholar 

  8. E. Abderhalden and G. Ceaser, Untersuchungen über das vorkommen von polypeptidasen in centralen und peripheren nerven system, Fermentforschung 16:255–262 (1940).

    CAS  Google Scholar 

  9. M.W. Kies and S. Schwimmer. Observations on proteinase in brain,J. Biol. Chem. 145:685–691 (1942).

    CAS  Google Scholar 

  10. V. E. Price, A. Meister, J. B. Gilbert, and J. P. Greenstein, Separation of dehydropeptidases and analogous L- and D-peptidases, J. Biol. Chem. 181:535–547 (1947).

    Google Scholar 

  11. E. S. Adams and E. L. Smith, Proteolytic activity of pituitary extracts, J. Biol. Chem. 191:651–664 (1951).

    PubMed  CAS  Google Scholar 

  12. H. Hanson and N. Tendis, Darstellung von Zellbestandteil-präparationen aus Hirngewebe und ihre Peptidase-Aktivität im Vergleich zu Niere und Leber, Z. Ges. Inn. Med. Ihre Grenzebiete 5:224–233 (1954).

    Google Scholar 

  13. A. Pope, Quantitative distribution of dipeptidase and acetylcholinesterase in architectonic layers of rat cerebral cortex, J. Neurophysiol. 15:115–130 (1952).

    PubMed  CAS  Google Scholar 

  14. A Pope, The intralaminar distribution of dipeptidase activity in human frontal isocortex, J.Neurochem. 4:31–41 (1959).

    Article  PubMed  CAS  Google Scholar 

  15. A. Pope and C. B. Anfinsen, Histochemical distribution of peptidase activity in the central nervous system of the rat, J. Biol Chem. 173:305–311 (1948).

    PubMed  CAS  Google Scholar 

  16. L. L. Uzman, M. K. Rumley, and S. Van Den Noort, The substrate specificity of mouse brain peptidase activity, J. Neurochem. 6:299–310 (1961).

    Article  CAS  Google Scholar 

  17. L. L. Uzman, M. K. Rumley, and S. Van Den Noort, Dipeptidase activity of the brain, Nature 186:559–560 (1960).

    Article  PubMed  CAS  Google Scholar 

  18. S. Van Den Noort and L. L. Uzman, Effect of metal ions on brain peptidase activity, Proc. Soc. Exptl. Biol. Med. 108:32–34 (1961).

    Google Scholar 

  19. L. L. Uzman, S. Van Den Noort, and M. K. Rumley, Properties and classification of some brain peptidases, J. Neurochem. 9:241–252 (1962).

    Article  PubMed  CAS  Google Scholar 

  20. L. L. Uzman, M. K. Rumley, and S. Van Den Noort, The inhibition of cerebral diglycinase by α-amino, α-keto and α-hydroxy acids, J. Neurochem. 10:795–804 (1963).

    Article  PubMed  CAS  Google Scholar 

  21. K. Linderstrøm-Lang, Über Darmerepsin, Z. Physiol. Chem. 182:151–174 (1929).

    Article  Google Scholar 

  22. K. Linderstrøm-Lang and H. Holter, Studies on enzymatic histochemistry XI. The distribution of peptidase in the gastric and duodenal mucosa of the pig, Compt. Rend. Lab. Carlsberg Sern. Chim. 20:42–56 (1935).

    Google Scholar 

  23. E. L. Smith and P. H. Spackmann, Leucineaminopeptidase V. Activation, specificity, and mechanism of action, J. Biol. Chem. 212:221–229 (1955).

    Google Scholar 

  24. E. D. Wachsmuth, Untersuchungen zur Struktur der Aminopeptidase aus Partikeln von Schweinenieren, Biochem. Z. 346:467–473 (1967).

    PubMed  CAS  Google Scholar 

  25. H. Hanson,in Hoppe-Segler Thierfelder Handbuch der Physiologisch- und Pathologisch-Chemischen Analyse, Vol. 6C, p. 1, Springer, Berlin (1966).

    Google Scholar 

  26. S. R. Himmelhoch and E. A. Peterson, Preparation of leucine aminopeptidase free of endopeptidase activity, Biochemistry 7:2085–2092 (1968).

    Article  PubMed  CAS  Google Scholar 

  27. I. Schecter and A. Berger, The hydrolysis of diasteroisomers of alanine peptides by carboxypeptidase A and leucine aminopeptidase, Biochemistry 5:3371–3383 (1966).

    Article  Google Scholar 

  28. J. B. Wolff and R. A. Resnick, Aminopeptidase of the outer lens. I. Metal ion requirements and synergistic activation II Substrate specificity, Biochim. Biophys. Acta 73:588–622 (1963).

    Article  PubMed  CAS  Google Scholar 

  29. S. Fittkau, D. Glässer, and H. Hanson, Zur Aktivität und Spezifität der Leucin-aminopeptidase in Augenlinsen. Aminosäure-und Dipeptidamilide als Substrate, Z. Physiol. Chem. 322:101–111 (1960).

    Article  CAS  Google Scholar 

  30. A. Spector, Lens aminopeptidase I. Purification and properties, J. Biol. Chem. 238:1353–1357 (1963).

    PubMed  CAS  Google Scholar 

  31. A. S. Brecher, The distribution and activity of calf brain peptidases, J. Neurochem. 10:1–6 (1963).

    Article  PubMed  CAS  Google Scholar 

  32. N. Marks, R. K. Datta, and A. Lajtha, The relationship of aminotripeptidase and arylamidase to protein breakdown in the brain, in Macromolecules and the Nervous System (Z. Lodin, ed.), Excerpta Medica, Amsterdam (1968).

    Google Scholar 

  33. E. K. Patterson, S. H. Hsiao, A. Keppel, and S. Sorot, Studies on dipeptidases and aminopeptidases. II. Zonal electrophoretic separation of rat liver peptidases, J. Biol. Chem. 240:710–715 (1965).

    PubMed  CAS  Google Scholar 

  34. R. L. Joseph and W. J. Saunders, Leucine aminopeptidase in extracts of swine muscle, Biochem. J. 100:827–832 (1966).

    PubMed  CAS  Google Scholar 

  35. E. K. Patterson, S. H. Hsiao, and A. Keppel, Studies on dipeptidases and aminopeptidases. I. Distinction between leucine aminopeptidase and enzymes that hydrolyze L-leucyl-β-naphthylamide, J. Biol Chem. 238:3611–3620 (1963).

    PubMed  CAS  Google Scholar 

  36. G. F. Bryce and B. R. Rabin, The assay and reaction kinetics of leucine aminopeptidase from swine kidney, Biochem. J. 90:509–512 (1964).

    PubMed  CAS  Google Scholar 

  37. E. L. Smith and R. L. Hill, Leucine aminopeptidase, in The Enzymes, 2nd ed., Vol. 4, pp. 37–62, Academic Press, New York (1960).

    Google Scholar 

  38. E. L. Smith, Aminopeptidases, in Methods in Enzymology (S. P. Colowick and N. O. Kaplin, eds.), Vol. 2, pp. 83–114, Academic Press, New York (1955).

    Chapter  Google Scholar 

  39. N. C. Davis and E. L. Smith, Partial purification and specificity of iminodipeptidase, J. Biol Chem. 200:375–384 (1953).

    Google Scholar 

  40. D. Ellis and J. S. Fruton, On the proteolytic enzymes of animal tissues. IX. Calf thymus tripeptidase, J. Biol Chem. 191:153–159 (1951).

    PubMed  CAS  Google Scholar 

  41. M. Ziff and A. A. Smith, Inhibition of aminotripeptidase, Proc. Soc. Exptl. Biol Med. 80:761–764 (1952).

    CAS  Google Scholar 

  42. R. K. Datta, N. Marks, and A. Lajtha, Purification and properties of brain tripeptidase, Federation Proc. 26:452 (1967).

    Google Scholar 

  43. N. Marks, Separation of brain peptidases and proteinases, Biochem. J. 103:40–41P (1967).

    Google Scholar 

  44. N. Marks, R. K. Datta, and A. Lajtha, Partial resolution of brain arylamidases and aminopeptidases, J. Biol. Chem. 243:2882–2889 (1968).

    PubMed  CAS  Google Scholar 

  45. A. S. Brecher and R. E. Sobel, Studies on ox-brain aminopeptidases, Biochem. J. 105:641–646 (1967).

    PubMed  CAS  Google Scholar 

  46. S. Simmonds and N. O. Toye, The role of metal ions in the peptidase activity in E. Coli, J. Biol. Chem. 242:2086–2093 (1967).

    PubMed  CAS  Google Scholar 

  47. L. Josefsson and T. Lindberg, Intestinal dipeptidases. Spectrophotometric determination and characterization of dipeptidase activity in pig intestinal mucosa, Biochim. Biophys. Acta 105:149–161 (1965).

    Article  PubMed  CAS  Google Scholar 

  48. A. Rosenberg, The Role of Metal Ions in the Catalytic Action of Peptidases, p. 14, Almquist and Wiksell, Uppsala (1960).

    Google Scholar 

  49. G. B. Robinson and B. Shaw, The hydrolysis of dipeptides by different regions of rat small intestine, Biochem. J. 77:351–356 (1960).

    PubMed  CAS  Google Scholar 

  50. H. G. Wilcox and M. Fried, Studies on rat-liver glycylglycine dipeptidase, Biochem. J. 87:192–199 (1963).

    PubMed  CAS  Google Scholar 

  51. H. von Euler and H. Hasselquist, Electrophoretic enzyme determinations in the blood, serum and brain of higher animals, Arch. Kemi 25:129–133 (1966).

    Google Scholar 

  52. H. von Euler, H. Hasselquist and K. Kyyroe, Electrophoretic enzyme determinations in the blood, serum and brain of higher animals, Pts. II and III, Arch. Kemi 25:151–157 and 257–262 (1966).

    Google Scholar 

  53. H. von Euler, K. Kyyroe, and H. Hasselquist, Electrophoretic enzyme determinations in the blood, serum and brain of higher animals, Pt. IV, Arch. Kemi 25: 97–107 (1966).

    Google Scholar 

  54. A. Nishi, Inhibition of yeast glycylglycine dipeptidase by amino acids, J. Biochem. Tokyo 47:47–59 (1959).

    Google Scholar 

  55. L. T. Graham, R. P. Shank, R. Werman, and M. H. Aprison, Distribution of some synaptic transmitters in cat spinal cord: Glutamic acid, aspartic acid, γ-aminobutyric acid, glycine and glutamine, J. Neurochem. 14:465–472 (1967).

    Article  PubMed  CAS  Google Scholar 

  56. D. R. Curtis, L. Hösli, and G. A. R. Johnston, A pharmacological study of the depression of spinal neurons by glycine and related amino acids, Exptl Brain Res. 6:1–18 (1968).

    Article  CAS  Google Scholar 

  57. A. S. Brecher and I. R. Koski, Studies on mammalian dipeptidases, Arch. Intern. Physiol. Biochem. 75:821–834 (1968).

    Article  Google Scholar 

  58. A. Meister, Biochemistry of the Amino Acids, 2nd ed., Vol. 1, p. 119, Academic Press, New York (1965).

    Google Scholar 

  59. E. A. Hosein and M. Smart, The presence of anserine and carnosine in brain tissue, Can. J. Biochem. Physiol. 38:569–573 (1960).

    Article  PubMed  CAS  Google Scholar 

  60. T. Nakajima, F. Wolfgram, and W. G. Clark, The isolation of homoanserine from bovine brain, J. Neurochem. 14:1107–1112 (1967).

    Article  PubMed  CAS  Google Scholar 

  61. D. Araham, J. J. Pisano, and S. Udenfriend, Uptake of carnosine and homocarnosine by rat brain slices, Arch. Biochem. Biophys. 104:160–165 (1964).

    Article  Google Scholar 

  62. D. J. McCorquodale, Some properties of a ribosomal cysteinylglycinase in Escherichia Coli B, J. Biol. Chem. 238:3914–3920 (1963).

    PubMed  CAS  Google Scholar 

  63. F. Binkley, Purification and properties of renal glutathionase, J. Biol. Chem. 236:1075–1082 (1961).

    CAS  Google Scholar 

  64. A. T. Matheson and T. Murayama, The limited release of ribosomal peptidase during formation of Escherichia coli spheroplasts, Can. J. Biochem. 44:1407–1415 (1966).

    CAS  Google Scholar 

  65. P. J. Fodor, A. Miller, A. Neidle, and H. Waelsch, Enzymatic synthesis of glutathione by a transfer reaction, J. Biol. Chem. 203:991–1002 (1953).

    PubMed  CAS  Google Scholar 

  66. E. L. Smith, Peptide bond cleavage (survey), in The Enzymes (P. D. Bpyer, H. Lardy, and K. Myrback, eds.), Vol. 4, pp. 1–10, Academic Press, New York (1960).

    Google Scholar 

  67. S. Sand, A. Berger, and E. Katchalski, Proline iminopeptidase. II. Purification and comparison with iminodipeptidade (prolinase), J. Biol. Chem. 237:2207–2212 (1962).

    Google Scholar 

  68. R. U. Margolis, Acid mucopolysaccharides and proteins of bovine whole brain, white matter and myelin, Biochim. Biophys. Acta 141:91–102 (1968).

    Article  Google Scholar 

  69. E. Roboz, N. Henderson, and N. W. Klies, A collagen-like compound isolated from bovine spinal cord, J. Neurochem. 2:254–259 (1958).

    Article  PubMed  CAS  Google Scholar 

  70. J. J. Hutton, A. Marglin, B. Witkop, J. Kurz, A. Berger, and S. Udenfriend, Synthetic polypeptidases as substrates and inhibitors of collagen proline hydroxylase, Arch. Biochim. Biophys. 125:779–785 (1968).

    Article  CAS  Google Scholar 

  71. E. R. Einstein, J. Csejtey, W. J. Davis, A. Lajtha, and N. Marks, Enzymic degradation of the encephalitogenic protein, Intern. Arch. Allergy Appl. Immunol. 34 (in press).

    Google Scholar 

  72. J. D. Padayatty and H. V. Kley, Studies on E-Peptidase, Biochemistry 5:1394–1399 (1966).

    Article  PubMed  CAS  Google Scholar 

  73. R. L. Friede, Topographic Brain Chemistry, Academic Press, New York (1966).

    Google Scholar 

  74. M.S. Burstone, Enzyme Histochemistry and Its Application in the Study of Neoplasm, Academic Press, New York (1962).

    Google Scholar 

  75. H. Tuppy, U. Wiesbauer, and E. Wintersberger, Aminosäure-p-nitroanilide als Substrate für Aminopeptidasen und andere proteolytische Fermente, Z. Physiol. Chem. 329:278–288 (1962).

    Article  CAS  Google Scholar 

  76. S. Ellis, A thiol activated aminopeptidase of the pituitary, Biochim. Biophys. Res. Commun. 12:452–456 (1963).

    Article  CAS  Google Scholar 

  77. A. Szewczuk, M. Kochman, and T. Baranowski, Dipeptide nitriles as substrates for colorimetric determination of aminopeptidases, Acta Biochim. Polon 12:357–367 (1965).

    PubMed  CAS  Google Scholar 

  78. V. K. Hcpsu, K. K. Mäkinen, and G. G. Glenner, Purification of a mammalian peptidase selective for N-terminal arginine and lysine residues: Aminopeptidase B, Arch. Biochem. Biophys. 114:557–566 (1966).

    Article  Google Scholar 

  79. E. E. Smith and A. M. Rutenberg, Starch gel electrophoresis of human tissue enzymes which hydrolyze L-leucyl-β-naphthylamide, Science 152:1256–1257 (1966).

    Article  PubMed  CAS  Google Scholar 

  80. G. G. Glenner, P. J. McMillan, and J. E. Folk, A mammalian peptidase specific for the hydrolysis of N-terminal α-1-glutamyl and aspartyl residues, Nature 194:867 (1962).

    Article  PubMed  CAS  Google Scholar 

  81. G. G. Glenner and J. E. Folk, Glutamyl peptidases in rat and guinea pig kidney slices, Nature 192:338–340 (1962).

    Article  Google Scholar 

  82. I. Nagatsu, L. Gillespie, J. M. George, J. E. Folk, and G. G. Glenner, Serum amino peptidases, “angiotensinase” and hypertension. II. Amino acid β-naphthylamide hydrolysis by normal and hypertensive serum, Biochem. Pharmacol. 14:853–857 (1965).

    Article  PubMed  CAS  Google Scholar 

  83. I. Nagatsu and J. Hara, Relationship between parathyroid function and serum aminopeptidase A. activity, Nature 213:206–207 (1967).

    Article  PubMed  CAS  Google Scholar 

  84. I. Nagatsu, T. Nagatsu, and G. G. Glenner, Species difference of serum amino acid-β-naphthylamidases, Enyzmologica 34:73–76 (1968).

    CAS  Google Scholar 

  85. P. A. Khairallah and I. H. Page, Plasma angiotensinases, Biochem. Med. 1:1–8 (1967).

    Article  CAS  Google Scholar 

  86. R. Hess, Arylamidase activity related to angiotensinase, Biochim. Biophys. Acta 99:316–324 (1965).

    Article  PubMed  CAS  Google Scholar 

  87. D. Regoli, B. Riniker, and H. Brunner, The enzymatic degradation of various angiotensin. II. derivatives by serum, plasma or kidney homogenate, Biochem. Pharmacol. 12:637–646 (1963).

    Article  PubMed  CAS  Google Scholar 

  88. D. C. Johnson and J. W. Ryan, Degradation of angiotensin-II by a carboxypeptidase of rabbit liver, Biochim. Biophys. Acta 160:196–203 (1968).

    Article  PubMed  CAS  Google Scholar 

  89. H. Y. T. Yang and E. G. Erdos, T. S. Chiang, New enzymatic route for the inactivation of angiotensin, Nature 218:1224–1226 (1968).

    Article  PubMed  CAS  Google Scholar 

  90. Z. Albert, M. Orlowski, Z. Rzucidlo, and J. Orlowska, Studies on γ-glutamyl transpeptidase activity and its histochemical location in the central nervous system of man and different animal species, Acta Histochem. 25:312–320 (1966).

    PubMed  CAS  Google Scholar 

  91. J. S. Fruton, Cathepsins, in The Enzymes (P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 233–241, Academic Press, New York (1960).

    Google Scholar 

  92. H. Wurtz, A. Tanaka, and J. S. Fruton, Polymerisation of dipeptide anides by cathepsin C, Biochemistry 1:19–28 (1962).

    Article  Google Scholar 

  93. H. McIlwain and M. A. Trezize, The speed of several cerebral reactions involving the nicotinamide coenzymes, Biochem. J. 65:288–296 (1957).

    PubMed  CAS  Google Scholar 

  94. Y. Kakimoto, T. Nakajima, A. Kanazawa, M. Takesada, and I. Sano, Isolation of γ-L-glutamyl-L-glutamic acid and γ-L-glutamyl-L-glutamine from bovine brain, Biochim. Biophys. Acta 93:333–338 (1964).

    Article  PubMed  CAS  Google Scholar 

  95. A. Kanazawa, Y. Kakimoto, T. Nakajima, H. Shimuzu, M. Takesada, and I. Sano, Isolation and identification of γ-L-glutamylglycine from bovine brain, Biochim. Biophys. Acta 97:460 (1965).

    Article  PubMed  CAS  Google Scholar 

  96. A. Z. Orlowski and A. Meister, Isolation of γ-glutamyl transpeptidase from hog kidney, J. Biol. Chem. 240:338–347 (1965).

    PubMed  CAS  Google Scholar 

  97. V. K. Hopsu-Harvu, P. Rintola, and G. G. Glenner, A hog kidney aminopeptidase liberating N-terminal dipeptides. Partial purification and characterization, Acta Chem. Scand. 22:299–308 (1968).

    Article  Google Scholar 

  98. S. Berl, Glutamine synthetase. Determination of its distribution in brain during development, Biochemistry 5:916–922 (1966).

    Article  PubMed  CAS  Google Scholar 

  99. J. H. Pincus and H. Waelsch, The specificity of transglutaminase I. Human haemoglobin as a substrate for the enzyme II. Structural requirements of the amine substrate Arch Biochem. Biophys. 126:34–52 (1968).

    Article  PubMed  CAS  Google Scholar 

  100. M. M. Nachlas, T. P. Goldstein, and A. M. Seliqman, An evaluation of aminopeptidase specificity with seven chromogenic substrates, Arch. Biochem. Biophys. 97:223–231 (1962).

    Article  PubMed  CAS  Google Scholar 

  101. V. K. Hopsu, K. K. Makinen, and G. G. Glenner, Characterization of aminopeptidase B: Substrate specificity and affector studies, Arch. Biochem. Biophys. 114: 567–575 (1966).

    Article  PubMed  CAS  Google Scholar 

  102. K. K. Mäkinen and V. K. Hopsu-Havu, A simplified method for purification of rat liver aminopeptidase B, Arch. Biochem. Biophys. 118:257–258 (1967).

    Article  Google Scholar 

  103. N. Marks, Purification and specificity of brain aminopeptidases-II, J. Biol. Chem. (to be submitted).

    Google Scholar 

  104. S. Mahavedan and A. L. Tappel, Arylamidases of rat liver and kidney, J. Biol. Chem. 242:2369–2374 (1967).

    Google Scholar 

  105. N. Marks, B. D’Monte, C. Bellman, and A. Lajtha, Protein turnover in brain mitochondrial membranes, Brain Res. 1 (in press).

    Google Scholar 

  106. R. K. Datta, N. Marks, and A. Lajtha, Exopeptidase Activities of Brain Subcellular Membrane Fractions, p. 49, First Meeting of the International Society of Neurochemistry, Strasbourg (1967).

    Google Scholar 

  107. R. K. Datta, N. Marks, and A. Lajtha, Peptide breakdown in cerebral mitochondria, Indian J. Biochem. 4:37 (1967).

    Google Scholar 

  108. G. Pfleiderer, P. G. Celliers, M. Stanulovic, E. D. Wachsmuth, H. Determan, and G. Braunitzer, Eigenschaften und analytische Anwendung der aminopeptidase aus Nierenpartikeln, Biochem. Z. 340:552–564 (1964).

    PubMed  CAS  Google Scholar 

  109. C. W. M. Adams and G. G. Glenner, Histochemistry of myelin-IV. Aminopeptidase activity in CNS and PNS, J. Neurochem. 9:233–239 (1962).

    Article  PubMed  CAS  Google Scholar 

  110. A. S. Brecher and S. W. Barefoot, The distribution of arylamidase activity in brain, Arch. Intern Physiol. Biochem. 75:816–820 (1967).

    Article  CAS  Google Scholar 

  111. K. Felgenhauer and G. G. Glenner, The enzymatic hydrolysis of amino acid-β-naphthylamides. II. Partial purification and properties of a particle-bound cobaltactivated rat kidney aminopeptidase, J. Histochem. Cytochem. 14:401–413 (1966).

    Article  PubMed  CAS  Google Scholar 

  112. B. Sylven and U. Lippi, The suggested lysosomal localization of aminoacyl naphthylamide splitting enzymes, Exptl. Cell Res. 40:145–147 (1965).

    Article  PubMed  CAS  Google Scholar 

  113. M. Rybak, M. Petáková, and E. Simonianová, Cleavage of glycine, alanine and leucine p-nitroanilides by some animal arylaminopeptidases, Collection Czech. Chem. Commun. 32:1051–1057 (1967).

    CAS  Google Scholar 

  114. F. J. Behal, R. A. Klein, and F. B. Dawson, Separation and characterization of aminopeptidase and arylamidase components of human liver, Arch. Biochem. Biophys. 115:545–554 (1966).

    Article  CAS  Google Scholar 

  115. S. Ellis and M. Perry, Pituitary arylamidase and peptidases, J. Biol. Chem. 241:3679–3686 (1966).

    PubMed  CAS  Google Scholar 

  116. H. Neurath, Carboxypeptidase A and B in The Enzymes (P. D. Boyer, H. Lardy, and K. Myrback, eds.), Vol. 4, Pt. A, pp. 11–36, Academic Press, New York (1960).

    Google Scholar 

  117. H. J. Strecker, P. Mela, and H. Waelsch, Brain thioesterases, J. Biol. Chem. 212:223–233 (1955).

    PubMed  CAS  Google Scholar 

  118. F. B. Goldstein, Biosynthesis of N-acetyl-L-aspartic acid, J. Biol. Chem. 234:2702–2706 (1959).

    CAS  Google Scholar 

  119. H. C. Buniatian, V. S. Hovhannissian, and G. V. Aprikan, The participation of N-acetyl-L-aspartic in brain metabolism, J. Neurochem. 12:695–703 (1965).

    Article  PubMed  CAS  Google Scholar 

  120. S. M. Birnbaum, L. Levinlow, R. B. Kinsley, and J. P. Greenstein, Specificity of amino acid acylases, J. Biol. Chem. 194:455–470 (1952);

    PubMed  CAS  Google Scholar 

  121. S. M. Birnbaum, L. Levinlow, R. B. Kinsley, and J. P. Greenstein, Specificity of amino acid acylases and in Methods in Enzymology (S. P. Colowick and N. O. Kaplan, eds.), Vol. 2, pp. 109–119, Academic Press, New York (1955).

    Google Scholar 

  122. F. B. Goldstein (personal communication).

    Google Scholar 

  123. J. R. Brown, R. N. Greenshields, M. Yamasaki, and H. Neurath, The subunit structure of bovine procarboxypeptidase A-S6. Chemical properties and enzymatic activities of the products of molecular disaggregation, Biochemistry 2:867–876 (1963).

    Article  PubMed  CAS  Google Scholar 

  124. J. W. Prahl and H. Neurath, Pancreatic enzymes of the spiny pacific dogfish-II. Procarboxypeptidase B and carboxypeptidase B, Biochemistry 5:4137–4145 (1966).

    Article  CAS  Google Scholar 

  125. H. Neurath, Evolution of structure and function of proteases, Science 158:1638–1644 (1967).

    Article  PubMed  CAS  Google Scholar 

  126. K. S. V. Sampath-Kumar, J. B. Clegg, and K. A. Walsh, The N-terminal sequence of bovine carboxypeptidase A and its relation to zymogen activation, Biochemistry 3:1728–1732 (1964).

    Article  CAS  Google Scholar 

  127. B. L. Vallee, Active center of carboxypeptidase A′, Federation Proc. 23:8–17 (1964).

    CAS  Google Scholar 

  128. J. E. Coleman and B. L. Vallee, Metallocarboxypeptidase-inhibitor complexes, Biochemistry 3:1874–1879 (1964).

    Article  PubMed  CAS  Google Scholar 

  129. H. Neurath, Procarboxypeptidases: Structure, mechanism of, action and phylogenetics, Proceedings of the Seventh International Congress of Biochemistry, Tokyo Symposium 3, p. 151, Science Council, Japan (1967).

    Google Scholar 

  130. R. T. Simpson and B. L. Vallee, Iodocarboxypeptidase, Biochemistry 5:1760–1767 (1966).

    Article  PubMed  CAS  Google Scholar 

  131. H. I. Lehrer, H. V. Vunakis, and G. D. Fasman, Carboxypeptidase A. Studies with poly α-amino acids, J. Biol. Chem. 240:4585–4590 (1965).

    PubMed  CAS  Google Scholar 

  132. W. A. Krivoy and D. Kroeger, The preservation of bradykinin by phenolthiathines in vitro, Brit. J. Pharmacol. 22:329–341 (1964).

    PubMed  CAS  Google Scholar 

  133. E. G. Erdos and H. Y. T. Yang, Hypotensive Peptides (E. G. Erdos, N. Back, and F. Sicuteri, eds.), pp. 235, Springer-Verlag, New York (1966).

    Chapter  Google Scholar 

  134. E. G. Erdos, H. Y. T. Yang, L. L. Taque, and N. Manning, Carboxypeptidase in blood and other fluids-Ill, Biochem. Pharmacol. 16:1287–1298 (1967).

    Article  PubMed  CAS  Google Scholar 

  135. E. G. Erdos, Hypotensive peptides, Advan. Pharmacol. 4:1 (1966).

    Article  CAS  Google Scholar 

  136. Symposium, Vasoactive peptides, Federation Proc. 27:49–99 (1968).

    Google Scholar 

  137. F. LaBella, S. Vivian, and G. Ceveen, Abundance of cystathione in the pineal body. Free amino acids and related compounds of bovine pineal, anterior and posterior pituitary, and brain, Biochem. Biophys. Acta 158:286–288 (1968).

    Article  PubMed  CAS  Google Scholar 

  138. C. H. Li, Current concepts on the chemical biology of pituitary hormones, Perspectives Biol. Med. 11:498–521 (1968);

    CAS  Google Scholar 

  139. also Symposium “growth hormone” (M. Sonnberg, ed.), Ann. N.Y. Acad. Sci. 148:284–571 (1968).

    Google Scholar 

  140. M. D. Hollenberg and D. B. Hope, The isolation of the native hormone-binding proteins from bovine pituitary posterior lobes. Crystallization of neurophysin-I and II as complexes with [8-arginine]-vasopressin, Biochem. J. 106:557 (1968).

    PubMed  CAS  Google Scholar 

  141. M. Ginsburg and K. Jayasena, The distribution of proteins that bind hypophysial hormones, J. Physiol. 197:65–76 (1968).

    PubMed  CAS  Google Scholar 

  142. E. L. Smith, Dipeptidases, in Methods in Enzymology (S. P. Colowick and N. O. Kaplan, eds.), Vol. 2, pp. 93–109, Academic Press, New York (1955).

    Chapter  Google Scholar 

  143. J. I. Harris, C. H. Li, P. G. Condliffe, and N. G. Pon, Action of carboxypeptidase on hypophysial growth hormone, J. Biol. Chem. 209:133–143 (1954).

    PubMed  CAS  Google Scholar 

  144. M. Sonnenberg, M. Kikutani, C. A. Free, A. C. Nadler, and J. M. Dellacha, Chemical and biological characterization of clinically active tryptic digests of bovine growth hormone, Ann. N. Y. Acad. Sci. 148:532–538 (1968).

    Article  Google Scholar 

  145. J. Ramachandran and C. H. Li, in Advances in Enzymology (F. F. Nord, ed.), Vol. 29, pp. 391, Wiley-Interscience, New York (1967).

    Google Scholar 

  146. P. Jouan and J. C. Rocaboy, Étude de l’activité peptidasique de la glande pinéale du Porc, Compt. Rend. Soc. Biol. 160:859–862 (1966).

    CAS  Google Scholar 

  147. T. P. J. Vanha-Perttulla and V. K. Hopsu, Esterolytic and proteolytic enzymes of the rat adenohypophysis. I. Studies with homogenate and its fractions, Histochemistry 4:312–378 (1965).

    Article  Google Scholar 

  148. T. P. J. Vanha-Perttula and V. K. Hopsu, Esterolytic and proteolytic enzymes of the rat adenohypophysis. II. Chromatographic fractionation and characterization of enzyme activities hydrolysing leucyl-β-naphthylamide, Ann. Med. Exptl. Fenniae 43:32–39 (1965).

    CAS  Google Scholar 

  149. J. K. McDonald, S. Ellis, and T. J. Reilly, Properties of dipeptidyl arylamidase I of the pituitary. Chloride and sulfhydryl activation of seryltyrosyl-β-naphthylamide, J. Biol. Chem. 241:1494–1501 (1966).

    PubMed  CAS  Google Scholar 

  150. J. K. McDonald, T. J. Reilly, B. B. Zeitman, and S. Ellis, Dipeptidyl arylamidase II of the pituitary. Properties of lysylalanyl-β-naphthylamide hydrolysis: inhibition by cations, distribution in tissues, and subcellular localization, J. Biol. Chem. 243:2028–2037 (1968).

    PubMed  CAS  Google Scholar 

  151. S. Ellis and J. M. Nuenke, Dipeptidyl arylamidase III of the pituitary. Purification and characterization, J. Biol. Chem. 242:4623–4629 (1968).

    Google Scholar 

  152. G. G. Glenner, L. A. Cohen, and J. E. Folk, The enzymatic hydrolysis of amino acid-β-naphthylamides. I. Preparation of amino acid and dipeptide-β-naphthylamides, J. Histochem. Cytochem. 13:57–64 (1965).

    Article  PubMed  CAS  Google Scholar 

  153. S. Kakiuchi and H. H. Tomizawa, Properties of a glucagen degrading enzyme from beef liver, J. Biol. Chem. 239:2160–2164 (1964).

    PubMed  CAS  Google Scholar 

  154. R. E. Smith and M. G. Farguhar, Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland, J. Cell Biol. 31:319–347 (1966).

    Article  PubMed  CAS  Google Scholar 

  155. H. Heller and K. Lederis, Characteristics of isolated neurosecretory vesicles from mammalian neural lobes, in Neurosecretion (H. Heller and R. B. Clark, eds.), pp. 35–50, Academic Press, New York (1962).

    Google Scholar 

  156. H. Sachs, Studies on the intracellular distribution of vasopressin, J. Neurochem, 10:289–297 (1963).

    Article  PubMed  CAS  Google Scholar 

  157. C. W. M. Adams, Histochemistry of the cells in the nervous system, in Neurohistochemistry (C. W. M. Adams, ed.), pp. 253–331, Elsevier, Amsterdam (1965).

    Google Scholar 

  158. R. Ortmann, in Handbook of Physiology (J. Field, ed.) Sec. 1, Vol. II, pp. 1034, Williams and Wilkins, Baltimore (1960).

    Google Scholar 

  159. H. F. Moyano, Effects of dehydration on rats hypothalamic acid-phosphatase, Experientia 23:529–530 (1967).

    Article  Google Scholar 

  160. Y. Arai and T. Kusama, Leucine aminopeptidase in the supraoptic and paraventricular nuclei of the hypothalamus in normal and dehydrated rats, Proc. Japan Acad. 41:734–736 (1965).

    CAS  Google Scholar 

  161. L. Avvy, Histochemical demonstration of enzymatic activities in neurosecretory centres of some homoiothermic animals, in Neurosecretion (H. Heller and R. B. Clark, eds.), pp. 215–225, Academic Press, New York (1962).

    Google Scholar 

  162. H. Tuppy, in Polypeptides which affect smooth muscles and blood vessels (M. Schachter, ed.), pp. 49–58, Pergamon Press, Oxford (1959).

    Google Scholar 

  163. K. C. Hooper, The distribution of hypothalamic peptidases in pregnant and nonpregnant dogs, Biochem. J. 90:584–587 (1964).

    PubMed  CAS  Google Scholar 

  164. W. A. Krivoy, The preservation of substance P by lysergic acid diethylamide, Brit. J. Pharmacol. 12:361–364 (1957).

    PubMed  CAS  Google Scholar 

  165. K. C. Hooper, The catabolism of some physiologically active polypeptides by homogenate of dog hypothalamus, Biochem. J. 83:511–517 (1962).

    PubMed  CAS  Google Scholar 

  166. K. C. Hooper, The enzymatic inactivation of some physiologically active polypeptides by different parts of the nervous system, Biochem. J. 88:398–404 (1963).

    PubMed  CAS  Google Scholar 

  167. A. V. Schally, E. E. Muller, A. Arimura, T. Saito, S. Sarvano, C. Y. Bowers, and S. L. Steelman Growth hormone-releasing factor (GRF): Physiological and biochemical studies with GRF preparations of bovine and porcine origin, Ann. N. Y. Acad. Sci. 148:372–373 (1968).

    Article  PubMed  CAS  Google Scholar 

  168. S. Watanabe and S. M. McCann, Localization and mechanism of action of follicle stimulating hormone-releasing factor (FSH-RF) as determined in vitro assay, Federation Proc. 26:365 (1967).

    Google Scholar 

  169. R. Deuben and J. Meites, Stimulation of pituitary growth hormone release by a hypothalamic extract in vitro, Endocrinology 74:415 (1964).

    Article  Google Scholar 

  170. A. V. Schally, E. E. Muller, S. Sarwano, T. Saito, and T. W. Redding, In vitro studies with hypothalamic releasing factors, Federation Proc. 26:365 (1967).

    Google Scholar 

  171. L. Thieblot, P. Bastide, S. Blaise, J. Boyer, and G. Dastugue, Enzymic activities of the pineal gland, Ann. Endocrinol. 26:313–314 (1965).

    CAS  Google Scholar 

  172. W. W. Tourtellotte, A selected review of reactions of the cerebrospinal fluid to disease, inNeurological Diagnostic Techniques (W. S. Field, ed.), pp. 1–25, Charles C. Thomas, Springfield, Illinois (1968).

    Google Scholar 

  173. W. Heyde, Zur Kenntis der Proteasen der cerebrospinal flussig keit, Z.Neurol. 138:536–543 (1932).

    Google Scholar 

  174. R. Abderhalden, Vorkommen von peptidases in c.s.f., Fermentforschung 17:173 (1943).

    CAS  Google Scholar 

  175. K. Stern, A. M. Cullen, V. T. Barber, and R. Richer, Peptidases in the cerebrospinal fluid, Can. Med. Assoc. J. 63:473–476 (1950).

    PubMed  CAS  Google Scholar 

  176. J. B. Green and M. Perry, Leucine aminopeptidase activity in c.s.f., Neurology 13:924–926 (1963).

    Article  PubMed  CAS  Google Scholar 

  177. L. F. Chapman and H. G. Wolff, Studies of proteolytic enzymes in cerebrospinal fluid patients with chronic schizophrenic reactions. A preliminary report, Biological Psychiatry, pp. 130–141, Grune & Stratton, New York (1959).

    Google Scholar 

  178. P. Wiechert, Vorkommen und Aktivitat von peptidasen in liquor cerebrospinalis, Acta Biol. Med. Ger. 16:11–14 (1966).

    PubMed  CAS  Google Scholar 

  179. P. J. Riekkinen and U. K. Rinne, Fractionation of peptidase and esterase activities of human cerebrospinal fluid, Brain Res. 9:136–144 (1968).

    Article  PubMed  CAS  Google Scholar 

  180. A. Nakao and E. R. Einstein, Chemical and immunological studies with a dialyzable encephalitogenic compound from bovine spinal cord, Ann. N.Y. Acad. Sci. 122:171–181 (1965).

    Article  PubMed  CAS  Google Scholar 

  181. E. R. Einstein, J. Csejtey, and N. Marks, Degradation of the encephalitogen by purified brain acid proteinase, FEBS Letters 1:191–195 (1968).

    Article  PubMed  Google Scholar 

  182. G. Porcellati and R. H. S. Thompson, The effect of nerve section on the free amino acids of nervous system, J. Neurochem. 1:340–347 (1957).

    Article  PubMed  CAS  Google Scholar 

  183. R. E. McCamen and E. Robins, Quantitative biochemical studies of Wallerian degeneration in the peripheral and central nervous system-I. Chemical constituents. II. Twelve enzymes, J. Neurochem. 5:18–41 (1959).

    Article  Google Scholar 

  184. T. Vanha-Perttula, V. K. Hopsu, and G. G. Glenner, Enzymes in hog kidney hydrolyzing amino acid naphthylamides, J. Histochem. Cytochem. 14:314–325 (1966).

    Article  PubMed  CAS  Google Scholar 

  185. V. K. Hopsu-Havu, K. K. Makinen, and G. G. Glenner, Formation of bradykinin from kalliden-10 by aminopeptidase B, Nature 212:1271–1272 (1966).

    Article  PubMed  CAS  Google Scholar 

  186. J. W. Ryan and J. K. McKenzie, Properties of renin substrate in rabbit plasma with a note on its assay, Biochem. J. 108:687–692 (1968).

    PubMed  CAS  Google Scholar 

  187. L. T. Skeggs, K. E. Lentz, J. R. Kalm, and H. Hochstrasser, Kinetics of the reaction of renin with nine synthetic peptide substrates, J. Exptl. Med. 128:13–34 (1968).

    Article  CAS  Google Scholar 

  188. Hopsu-Harvu, P. Rintola, and G. G. Glenner, A hog-kidney aminopeptidase liberating N-terminal dipeptides, Partial purification and characterization, Acta Chem. Scand. 22:299–308 (1968).

    Article  Google Scholar 

  189. V. S. Mathur and J. M. Walker, Oxytocinase in plasma and placenta in normal and prolonged labour, Brit. Med. J. 3:96–97 (1968).

    Article  PubMed  CAS  Google Scholar 

  190. S. P. Bessman and R. Baldwin, Imidazole aminoaciduria in cerebromacular degeneration, Science 135:789–790 (1962).

    Article  PubMed  CAS  Google Scholar 

  191. A. Meister,in Biochemistry of the Amino Acids (A. Meister, ed.), 2nd ed., Academic Press, New York (1965).

    Google Scholar 

  192. A. Lajtha, Alteration and pathology of cerebral protein metabolism, Intern. Rev. Neurobiol 7:1–40 (1964).

    Article  Google Scholar 

  193. L. Heppel, Selective release of enzymes from bacteria, Science 156:1451–1455 (1967).

    Article  PubMed  CAS  Google Scholar 

  194. A. B. Pardee, L. S. Prestidge, M. B. Whipple, and J. Dreyfuss, A binding site for sulfate and its relation to sulfate transport into Salmonella typhimuriam, J. Biol. Chem. 241:3962–3969 (1966).

    PubMed  CAS  Google Scholar 

  195. J. R. Piperno and D. L. Oxender, Animo acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732–5733 (1966).

    PubMed  CAS  Google Scholar 

  196. H. R. Kaback and E. R. Stadtman, Glycine uptake in Escherichia coli-II. Glycine uptake and metabolism by an isolated membrane preparation, J. Biol. Chem. 243:1390–1400 (1968).

    PubMed  CAS  Google Scholar 

  197. Y. Anraku, The reaction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793–780 (1967).

    CAS  Google Scholar 

  198. W. Kundig, S. Ghosh, and S. Roseman, Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system, Proc. Natl. Acad. Sci. 52:1067–1074 (1964).

    Article  PubMed  CAS  Google Scholar 

  199. E. Kennedy, Recent progress in the biochemistry of membranes, Proceedings of the Seventh International Congress of Biochemistry of the Plenary Sessions I.U.B., Vol. 36, pp. 51–62, Science Council Japan (1967).

    Google Scholar 

  200. H. N. Christensen and M. L. Rafn, Uptake of peptides by a free-cell neoplasm, Cancer Res. 12:495–497 (1952).

    PubMed  CAS  Google Scholar 

  201. F. R. Leach and E. F. Snell, The absorption of glycine and alanine and their peptides by Lactobacillus casei, J. Biol. Chem. 235:3523–3531 (1960).

    PubMed  CAS  Google Scholar 

  202. D. Kessel and M. Lubin, On the distinction between peptidase activity and peptide transport, Biochim. Biophys. Acta 71:656–663 (1963).

    Article  PubMed  CAS  Google Scholar 

  203. T. D. Brock and S. O. Wooley, Glycylglycine uptake in streptococci and a possible role of peptides in amino acid transport, Arch. Biochem. Biophys. 105:51–57 (1964).

    Article  PubMed  CAS  Google Scholar 

  204. J. W. Payne and C. Gilvary, Oligopeptide transport in Escherichia coli, J. Biol. Chem. 243:3395–3403 (1968).

    PubMed  CAS  Google Scholar 

  205. R. K. Crane, Structure and functional organization of an epithelial cell brush border, inIntracellular Transport (K. B. Warren, ed.), pp. 71–102, Academic Press, New York (1966).

    Google Scholar 

  206. A. Eicholz, Studies on the organization of the brush border in intestinal epithelial cells-V. Subfractionation of enzymatic activities of the microvillus membrane, Biochim. Biophys. Acta 163:101–107 (1968).

    Article  Google Scholar 

  207. P. Emmelot, and A. Visser, and E. L. Benedetti, Studies on plasma membranes-VII. A leucyl-β-naphthylamidase containing repeating units of the surface of isolated liver and hepatoma plasma membranes, Biochim. Biophys. Acta 150:364–375 (1968).

    Article  PubMed  CAS  Google Scholar 

  208. J. J. Pisano, J. D. Wilson, L. Cohen, D. Abraham, and S. Udenfriend, Isolation of γ-aminobutyrylhistidine (Homocarnosine) from brain, J. Biol. Chem. 236:499–502 (1961).

    PubMed  CAS  Google Scholar 

  209. D. Abraham, J. J. Pisano, and S. Udenfriend, The distribution of homocarnosine in mammals, Arch. Biochem. Biophys. 99:210–213 (1962).

    Article  PubMed  CAS  Google Scholar 

  210. N. Marks and A. Lajtha, Protein breakdown, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. V, Plenum Press, New York (in preparation).

    Google Scholar 

  211. N. Cuzin, N. Kretchmer, R. E. Greenberg, R. Hurwitz, and F. Chapeville, Enzymatic hydrolysis of N-substitutal aminoacyl-tRNA, Proc. Natl. Acad. Sci. 58:2079–2083 (1967).

    Article  PubMed  CAS  Google Scholar 

  212. H. Kossel and U. L. RajBhandarz, Studies on polynucleotides. Enzymatic hydrolysis of N-acylaminoacyl-transfer-RNA, J. Mol. Biol. 35:539 (1968).

    Article  PubMed  CAS  Google Scholar 

  213. J. C. Brown and P. Doty, Protein factor requirement for binding of messenger RNA to ribosomes, Biochem. Biophys. Res. Commun. 30:284–291 (1968).

    Article  PubMed  CAS  Google Scholar 

  214. J. Lucas-Lenand and A. L. Haenni, Requirement of guanosine 5′-tri-phosphate for ribosomal binding of aminoacyl-L-sRNA, Proc. Natl. Acad. Sci. 59:554–559 (1968).

    Article  Google Scholar 

  215. R. K. Datta, N. Marks, and A. Lajtha, Protein breakdown in peripheral nerve and lobster ventral cord (unpublished results), see Axoplasmic transport, Neurosci. Res. Progr. Bull. 5:(4), 341 (1968).

    Google Scholar 

  216. F. H. Leibach and F. Brinkley, γ-Glutamyl transferase of swine kidney, Arch. Biochem. Biophys. 127:292–301 (1968).

    Article  CAS  Google Scholar 

  217. A. Yaron and D. Mylnar, Aminopeptidase P., Biochem. Biophys. Res. Commun. 32:658–663 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Marks, N. (1970). Peptide Hydrolases. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics