Skip to main content

Abstract

Phosphatases are a diverse and ubiquitous group of enzymes which occur in most organisms and tissues. To date all nervous systems have been found to have at least nonspecific alkaline and acid phosphatases. No observed activity probably means no activity under experimental conditions, not the absence of phosphatases. The nonspecific alkaline and acid phosphatases have been extensively studied. Besides these, many specific phosphatases have been found in nervous tissue, but studies of these enzymes have been limited. The occurrence and gross histological localization of nonspecific alkaline and acid phosphatase in nervous tissue of mammals and birds are well known. Although no one species has been studied in detail through its complete life cycle, the general pattern of changes in activity and distribution of these nonspecific phosphatases during development is also fairly clear. Much less is known about specific or nonspecific phosphatases in other vertebrates, and practically nothing is known about phosphatases in invertebrate nervous systems. Most of the investigations have relied largely on histochemical methods, where applicable. As a result, the properties of phosphatases in nervous tissue are poorly known and must be extrapolated from the properties of similar enzymes isolated from other sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A. General References, Reviews, and Monographs

  1. C. W. M. Adams, Chap. 10, Disorders of neurones and neuroglia, pp. 403–436; in Neurohistochemistry (C. W. M. Adams, ed.), Elsevier Publishing Co., New York (1965).

    Google Scholar 

  2. C. W. M. Adams, M. Z. M. Ibrahim, and S. Leibowitz, Chap. 11, Demyelination, pp. 437–487; in Neurohistochemistry (C. W. M. Adams, ed.), Elsevier Publishing Co., New York (1965).

    Google Scholar 

  3. C. W. M. Adams, Chap. 13, Histochemistry of cerebrovascular degeneration, pp. 519–546; in Neurohistochemistry (C. W. M. Adams, ed.), Elsevier Publishing Co., New York (1965).

    Google Scholar 

  4. R. G. Spector, Chap. 14, Enzyme chemistry of anoxic brain injury, pp. 547–557; in Neurohistochemistry (C. W. M. Adams, ed.), Elsevier Publishing Co., New York (1965).

    Google Scholar 

  5. K. C. Dixon, Chap. 15, Ischaemia and the neurone, pp. 558–598, in Neurohistochemistry (C. W. M. Adams, ed.), Elsevier Publishing Co., New York (1965).

    Google Scholar 

  6. L. Arvy, Les Phosphatases du Tissu Nerveux, Hermann, Paris (1966). This is an excellent recent review covering much the same material as this article but from a somewhat different point of view. It should be consulted for additional details and for additional references, especially to the older literature.

    Google Scholar 

  7. T. Barka and P. J. Anderson, Chap. IX, Histochemical demonstration of hydrolytic enzymes, pp. 203–211; in Histochemistry; Theory, Practice, and Bibliography, Harper and Row Publishers, New York (1963).

    Google Scholar 

  8. T. Barka and P. J. Anderson, Chap. X, Phosphatases, pp. 212–256, in Histochemistry; Theory, Practice, and Bibliography, Harper and Row Publishers, New York (1963).

    Google Scholar 

  9. M. S. Burstone, Chap. 4, Sec. V, Substantivity and histochemical localizations; pp. 138–152; in Enzyme Histochemistry and Its Application in the Study of Neoplasms, Academic Press, New York (1962).

    Google Scholar 

  10. M. S. Burstone, Chap. 5, Phosphatases, pp. 160–292, in Enzyme Histochemistry and Its Application in the Study of Neoplasms, Academic Press, New York (1962).

    Google Scholar 

  11. R. L. Friede, Chap. VIII, Alkaline and acid phosphatases and nonspecific esterases, in Topographic Brain Chemistry, pp. 178–223, Academic Press, New York (1966). This is an excellent survey of its field, the “chemical anatomy” of the brain, primarily at the level of histology, and regional anatomy, rather than cellular and intracellular localization.

    Google Scholar 

  12. G. G. Glenner, Chap. 4, Enzyme histochemistry, in Neurohistochemistry (C. W. M. Adams, ed.), pp. 109–160, Elsevier Publishing Co., New York (1965).

    Google Scholar 

  13. R. K. Morton, Chap 2, Phosphatases, in Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 16, pp. 55–84, Elsevier Publishing Co., New York (1965). A good brief summary of the enzymatic properties of the various phosphatases.

    Google Scholar 

  14. A. G. E. Pearse, Chap. XIII, The principles of hydrolytic enzyme histochemistry, pp. 363–383; in Histochemistry, Theoretical and Applied, 2nd ed., Little, Brown, and Co., Boston (1960). This is one of the classic texts on histochemistry. Although somewhat out of date for the newer azo-dye coupling stains, it is an excellent critical source for older methods and for principles and artifacts.

    Google Scholar 

  15. A. G. E. Pearse, Chapter XIV, Alkaline phosphatases, pp. 384–430; in Histochemistry, Theoretical and Applied, 2nd ed., Little, Brown, and Co., Boston (1960). This is one of the classic texts on histochemistry. Although somewhat out of date for the newer azo-dye coupling stains, it is an excellent critical source for older methods and for principles and artifacts.

    Google Scholar 

  16. A. G. E. Pearse, Chap. XV, Acid phosphatases, pp. 431–455, in Histochemistry, Theoretical and Applied, 2nd ed., Little, Brown, and Co., Boston (1960). This is one of the classic texts on histochemistry. Although somewhat out of date for the newer azo-dye coupling stains, it is an excellent critical source for older methods and for principles and artifacts.

    Google Scholar 

  17. G. Schmidt, Chap. 2, Nonspecific acid phosphomonoesterases, in The Enzymes, (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), 2nd ed., Vol. 5, pp. 37–47, Academic Press (1961). Although dated and somewhat sketchy, this is the best and most recent easily accessible review devoted to these enzymes.

    Google Scholar 

  18. T. C. Stadtman, Chap. 4, Alkaline phosphatases, in The Enzymes (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), 2nd ed., Vol. 5, pp. 55–71, Academic Press (1961). Although somewhat dated, this is the most recent easily accessible review and is an excellent survey of the topic at the time it was written.

    Google Scholar 

B. Other References

  1. B. W. Agranoff, Hydrolysis of long-chain alkyl phosphates and phosphatidic acid by an enzyme purified from pig brain, J. Lipid Res. 3:190–196 (1962).

    CAS  Google Scholar 

  2. W. N. Aldridge, The rate of formation and decomposition of phosphoryl-phosphatase (Escherichia coli), Biochem. J. 92:23–25 (1964).

    Google Scholar 

  3. P. J. Anderson, The effect of autolysis on the distribution of acid phosphatase in rat brain, J. Neurochem. 12:919–925 (1965).

    Article  PubMed  CAS  Google Scholar 

  4. P. J. Anderson and S. K. Song, Acid phosphatase in the nervous system (I, II), J. Neuropathol. Exptl. Neurol. 21:263–283 (1962).

    Article  CAS  Google Scholar 

  5. P. J. Anderson, S. K. Song, and N. Christoff, The cytochemistry of acid phosphatase in neural tissue: Separation, validation, and localization, Proc. 4th Intern. Congr. Neuropathol., Munich, 1961

    Google Scholar 

  6. P. J. Anderson, S. K. Song, and N. Christoff, The cytochemistry of acid phosphatase in neural tissue: Separation, validation, and localization (H. Jacob, ed.), Vol. 1, Histochemistry and Biochemistry of the Diseases of the Central and Peripheral Nervous System, pp. 75–19, Georg Thieme Verlag, Stuttgart (1962).

    Google Scholar 

  7. R. G. Bannister and F. C. A. Romanul, The localization of alkaline phosphatase activity in cerebral blood vessels, J. Neurol. Neurosurg. Psychiat. 26:333–340 (1963).

    Article  PubMed  CAS  Google Scholar 

  8. K. D. Barron, J. Bernsohn, and A. R. Hess, Zymograms of neural acid phosphatases. Implications for slide histochemistry, J. Histochem. Cytochem. 12:42–44 (1964).

    Article  PubMed  CAS  Google Scholar 

  9. K. D. Barron and R. Boshes, Histochemical demonstration of 5-nucleotidase in the central nervous system. Effects of manganous ion and pH, J. Histochem. Cytochem. 9:455–457 (1961).

    Article  PubMed  CAS  Google Scholar 

  10. K. D. Barron and S. Sklar, Response of lysosomes of bulbospinal motoneurons to axon section, Neurology 11:866–875 (1961).

    Article  PubMed  CAS  Google Scholar 

  11. K. D. Barron and T. O. Tuncbay, Phosphatase in cuneate nuclei after brachial plexectomy, Arch. Neurol. 7: 203–210 (1962).

    Article  PubMed  CAS  Google Scholar 

  12. K. D. Barron and T. O. Tuncbay, Phosphatase histochemistry of feline cervical spinal cord after brachial plexectomy. Hydrolysis of β-glycerophosphate, thiamine pyrophosphate and nucleoside diphosphates, J. Neuropathol. Exptl. Neurol. 23:368–386 (1964).

    Article  CAS  Google Scholar 

  13. N. H. Becker, The cytochemistry of anoxic and anoxic-ischemic encephalopathy in rats. III. Alterations in the neuronal Golgi apparatus identified by nucleoside diphosphatase activity, Am. J. Pathol. 40:243–252 (1962).

    PubMed  CAS  Google Scholar 

  14. N. H. Becker and K. D. Barron, The cytochemistry of anoxic and anoxic-ischemic encephalopathy in rats. I. Alterations in neuronal lysosomes identified by acid phosphatase activity, Am. J. Pathol. 38:161–175 (1961).

    PubMed  CAS  Google Scholar 

  15. N. H. Becker, S. Goldfischer, W.-Y. Shin, and A. B. Novikoff, The localization of enzyme activities in the rat brain, J. Biophys. Biochem. Cytol. 8:649–663 (1960).

    Article  PubMed  CAS  Google Scholar 

  16. N. H. Becker, A. B. Novikoff, and S. Goldfischer, A cytochemical study of the neuronal Golgi apparatus, Arch. Neurol. 5:497–503 (1961).

    Article  PubMed  CAS  Google Scholar 

  17. F. J. Behal and M. Center, Heterogeneity of calf intestinal alkaline phosphatase, Arch. Biochem. Biophys. 110: 500–505 (1965).

    Article  PubMed  CAS  Google Scholar 

  18. J. Bernsohn and K. D. Barron, Multiple molecular forms of brain hydrolases, Intern. Rev. Neurobiol. 7:297–344 (1964).

    Article  Google Scholar 

  19. E. W. Bingham and C. A. Zittle, Purification and properties of acid phosphatase in bovine milk, Arch. Biochem. Biophys. 101:471–477 (1963).

    Article  PubMed  CAS  Google Scholar 

  20. M. Blank, Enzymmuster pH-abhängiger saurer Phosphatasen der Katzenretina, Acta Histochem 28:8–50 (1967).

    PubMed  CAS  Google Scholar 

  21. M. Blank and R. Oehlschlägel, pH-abhängige intracelluläre Verteilung der sauren Phosphatase im Rückenmark des Huhnes, Gallus domesticus, Histochemie 6:187–208 (1966).

    CAS  Google Scholar 

  22. D. Bodian and R. C. Mellors, The regenerative cycle of motoneurons, with special reference to phosphatase activity, J. Exptl. Med. 81:469–488 (1945).

    Article  CAS  Google Scholar 

  23. M. S. Burstone, The relationship between fixation and techniques for the histochemical localization of hydrolytic enzymes, J. Histochem. Cytochem. 6:322–339 (1958).

    Article  PubMed  CAS  Google Scholar 

  24. W. Y. Cheung, Properties of cyclic 3′,5′-nucleotide phosphodiesterase from rat brain, Biochemistry 6:1079–1087 (1967).

    Article  PubMed  CAS  Google Scholar 

  25. W. Y. Cheung and L. Salganicoff, Cyclic 3′,5′-nucleotide phosphodiesterase: Localization and latent activity in rat brain, Nature 214:90–91 (1967).

    Article  PubMed  CAS  Google Scholar 

  26. A. D. Chiquoine, Distribution of alkaline Phosphomonoesterase in the central nervous system of the mouse embryo, J. Comp. Neurol. 100:415–439 (1954).

    Article  PubMed  CAS  Google Scholar 

  27. S. R. Cohen and I. B. Wilson, Measurement of the zinc dissociation constants of alkaline phosphatase from Escherichia coli by equilibration with zinc ion buffers, Biochemistry 5:904–909 (1966).

    Article  PubMed  CAS  Google Scholar 

  28. P. Cohn and D. Richter, Enzymic development and maturation of the hypothalamus, J. Neurochem. 1:166–172 (1956).

    Article  PubMed  CAS  Google Scholar 

  29. H.-J. Colmant, Aktivitätsschwankungen der sauren Phosphatase im Rückenmark und den Spinalganglien der Ratte nach Durchschneidung des Nervus ischiadicus, Arch. Psychiat. Nervenkrankh. 199:60–71 (1959).

    Article  CAS  Google Scholar 

  30. V. R. Cunningham and E. J. Field, Alkaline phosphatase isozyme systems of the guinea pig in health and in experimental allergic encephalomyelitis, J. Neurochem. 11:281–285 (1964).

    Article  PubMed  CAS  Google Scholar 

  31. R. K. Datta and J. J. Ghosh, Phosphodiesterase activity of ribosome preparation from goat brain, J. Neurochem. 10:285–286 (1963).

    Article  PubMed  CAS  Google Scholar 

  32. R. K. Datta and J. J. Ghosh, Alkaline Phosphomonoesterase activity of goat brain cortex ribosomes, J. Neurochem. 11:779–786 (1964).

    Article  PubMed  CAS  Google Scholar 

  33. A. N. Davison and N. A. Gregson, Cytochemistry of the nervous system, Chap. 6, in Neurohistochemistry (C. W. M. Adams, ed.), pp. 189–235, Elsevier Publishing Co., New York (1965).

    Google Scholar 

  34. R. M. C. Dawson and W. Thompson, The triphosphoinositide Phosphomonoesterase of brain tissue, Biochem. J. 91:244–250 (1964).

    PubMed  CAS  Google Scholar 

  35. H. W. Deane, Nuclear location of phosphatase activity: Fact or artifact? J. Histochem. Cytochem. 11:443–444 (1963).

    Article  Google Scholar 

  36. Gy. Domján and E. Minker, Untersuchung der Phosphomonoesterasen in den zentralen Nervenganglien der Weinbergschnecke (Helix pomatia), Acta Biol. Acad. Sci. Hung. 11:219–229 (1960).

    Google Scholar 

  37. J. Drukker and J. P. Schadé, The localization of some enzymes in the optic system of cephalopods, Acta Morphol. Neerl. Scand. 5:290–291 (1963).

    Google Scholar 

  38. J. Drukker and J. P. Schadé, Degeneration patterns in the optic lobe of cephalopods, Progr. Brain Res. 14:122–142 (1965).

    Article  CAS  Google Scholar 

  39. G. I. Drummond, N. T. Iyer, and J. Keith, Hydrolysis of ribonucleoside 2′,3′-cyclic phosphates by a diesterase from brain, J. Biol. Chem. 237:3535–3539 (1962).

    Google Scholar 

  40. C. de Duve, General principles, Chap. 1, in Enzyme Cytochemistry (D. B. Roodyn, ed.), pp. 1–26, Academic Press, New York (1967).

    Google Scholar 

  41. R. H. Eaton and D. W. Moss, Inhibition of the orthophosphatase and pyrophosphatase activities of human alkaline phosphatase, Biochem. J. 102:917–921 (1967).

    PubMed  CAS  Google Scholar 

  42. H. N. Fernley and P. G. Walker, Phosphorylation of Escherichia coli alkaline phosphatase by substrate, Nature 212:1435–1437 (1966).

    Article  PubMed  CAS  Google Scholar 

  43. H. N. Fernley and P. G. Walker, Phosphorylation of calf-intestinal alkaline phosphatase by substrate, Biochem. J. 102:48–49 (1967).

    Google Scholar 

  44. C. Fieschi and S. Soriani, Enzymic activities in the spinal cord after sciatic section. Alkaline and acid phosphatases, 5-nucleotidase and ATP-ase, J. Neurochem. 4:11–71 (1959).

    Article  Google Scholar 

  45. E. Fischer, Anorganische alkalische Pyrophosphatase in Nervenzellen, Acta Histochem. 24:382–384 (1966).

    PubMed  CAS  Google Scholar 

  46. J. B. Flexner and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis. VII. Adenylpyrophosphatase and acid phosphatase activities in the developing cerebral cortex and liver of the fetal guinea pig, J. Cellular Comp. Physiol. 31: 311–320 (1948).

    Article  CAS  Google Scholar 

  47. J. B. Flexner, C. L. Greenblatt, S. R. Cooperband, and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis. XIX. Alkaline phosphatase and aldolase activities in the developing cerebral cortex and liver of the fetal guinea pig, Am. J. Anat. 98:129–138 (1956).

    Article  PubMed  CAS  Google Scholar 

  48. R. L. Friede, A quantitative mapping of alkaline phosphatase in the brain of the rhesus monkey, J. Neurochem. 13:197–203 (1966).

    Article  PubMed  CAS  Google Scholar 

  49. R. L. Friede and M. Knoller, Quantitative tests of histochemical methods for phosphomonoesterases in brain tissue, J. Hisiochem. Cytochem. 13:125–132 (1965).

    Article  CAS  Google Scholar 

  50. R. L. Friede and M. Knoller, A quantitative mapping of acid-phosphatase in the brain of the rhesus monkey, J. Neurochem. 12:441–450 (1965).

    Article  PubMed  CAS  Google Scholar 

  51. R. O. Friedel, J. D. Brown, and J. Durrell, Monophosphatidyl inositol inositolphosphohydrolase in guinea pig brain, Biochim. Biophys. Acta 144:684–686 (1967).

    Article  PubMed  CAS  Google Scholar 

  52. A. Garen and C. Levinthal, A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase, Biochim. Biophys. Acta 38:470–483 (1960).

    Article  PubMed  CAS  Google Scholar 

  53. S. Goldfischer, The Golgi apparatus and the endoplasmic reticulum in neurons of the rabbit, J. Neuropathol. Exptl. Neurol. 23:36–45 (1964).

    Article  CAS  Google Scholar 

  54. G. Gomori, Microtechnical demonstration of phosphatase in tissue sections, Proc. Soc. Exptl. Biol. Med. 42:23–26 (1939).

    CAS  Google Scholar 

  55. G. Gomori, Distribution of acid phosphatase in the tissues under normal and under pathologic conditions, Arch. Pathol. 32:189–199 (1941).

    CAS  Google Scholar 

  56. J. J. Gordon, Properties of brain pyrophosphatase, Biochem. J. 46:96–99 (1950).

    PubMed  CAS  Google Scholar 

  57. J. J. Gordon, Observations on brain phosphatases, Biochem. J. 55:812–817 (1953).

    PubMed  CAS  Google Scholar 

  58. M. K. Gordon, K. G. Bench, G. G. Deanin, and M. W. Gordon, Histochemical and biochemical study of synaptic lysosomes, Nature 217:523–527 (1968).

    Article  PubMed  CAS  Google Scholar 

  59. R. S. Grier, M. B. Hood, and M. B. Hoagland, Observations on the effects of beryllium on alkaline phosphatase, J. Biol. Chem. 180:289–298 (1949).

    PubMed  CAS  Google Scholar 

  60. S. Grisolia, J. Caravaca, and B. K. Joyce, Purification and properties of brain carbamyl and acyl phosphatase, Biochim. Biophys. Acta 29:432–433 (1958).

    Article  PubMed  CAS  Google Scholar 

  61. J. W. Healy, D. Stollar, M. I. Simon, and L. Levine, Characterization of phosphodiesterase from lamb brain, Arch. Biochem. Biophys. 103:461–468 (1963).

    Article  PubMed  CAS  Google Scholar 

  62. L. A. Heppel, D. R. Harkness, and R. J. Hilmoe, A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli, J. Biol. Chem. 237:841–846 (1962).

    PubMed  CAS  Google Scholar 

  63. H. E. Hirsch, Acid phosphatase localization in individual neurons by a quantitative histochemical method, J. Neurochem. 15:123–130 (1968).

    Article  PubMed  CAS  Google Scholar 

  64. D. M. Hollinger, R. J. Rossiter, and H. Upmalis, Chemical studies of peripheral nerve during Wallerian degeneration. 4. Phosphatases, Biochem. J. 52:652–659 (1952).

    PubMed  CAS  Google Scholar 

  65. E. Holtzman, A. B. Novikoff, and H. Villaverde, Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum, J. Cell. Biol. 33:419–435 (1967).

    Article  PubMed  CAS  Google Scholar 

  66. H. Hydén, The chemistry of single neurons: A study with new methods, in Proc. 1st Intern. Neurochem. Symp., Oxford, 1954

    Google Scholar 

  67. H. Hydén, The chemistry of single neurons: A study with new methods (H. Waelsch, ed.), Biochemistry of the Developing Nervous System, pp. 358–371, Academic Press, New York (1955).

    Google Scholar 

  68. H. Hydén, Dynamic aspects on the neuron-glia relationship. A study with microchemical methods, Chap. 4, in The Neuron (H. Hydén, ed.), pp. 179–219, Elsevier Publishing Co., New York (1967).

    Google Scholar 

  69. K. Iijima, T. R. Shantha, and G. H. Bourne, Enzyme-histochemical studies on the hypothalamus with special reference to the supraoptic and paraventricular nuclei of squirrel monkey (Saimiri sciureus), Z. Zellforsch. Mikroskop. Anat. 79:76–91 (1967).

    Article  CAS  Google Scholar 

  70. J. S. Kaluza and M. S. Burstone, Staining patterns of phosphatases of the central nervous system with azo-dye methods, J. Neuropathol. Exptl. Neurol. 23:477–485 (1964).

    Article  CAS  Google Scholar 

  71. F. I. Khattab, Alterations in acid phosphatase bodies (lysosomes) in cat motoneurons after asphyxiation of the spinal cord, Exptl. Neurol. 18:133–140 (1967).

    Article  CAS  Google Scholar 

  72. F. W. Klemperer, J. M. Miller, and C. J. Hill, The inhibition of alkaline phosphatase by beryllium, J. Biol. Chem. 180:281–288 (1949).

    PubMed  CAS  Google Scholar 

  73. M. L. Kornguth and E. A. Stubbs, Hydrolysis of phosphohydroxypyruvate and β-glycerophosphate by a phosphatase preparation from beef brain, Arch. Biochem. Biophys. 109:104–109 (1965).

    Article  PubMed  CAS  Google Scholar 

  74. G. W. Kreutzberg and H. Hager, Electron microscopical demonstration of acid phosphatase activity in the central nervous system, Histochemie 6:254–259 (1966).

    Article  PubMed  CAS  Google Scholar 

  75. T. Kurihara and Y. Tsukada, The regional and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system, J. Neurochem. 14:1167–1174 (1967).

    Article  PubMed  CAS  Google Scholar 

  76. H. Landow, E. Kabat, and W. Newman, Distribution of alkaline phosphatase in normal and in neoplastic tissues of the nervous system. A histochemical study, (A.M.A.) Arch. Neurol. Psychiat. 48: 518–530 (1942).

    Article  CAS  Google Scholar 

  77. N. J. Lane, Thiamine pyrophosphatase, acid phosphatase, and alkaline phosphatase in the neurones of Helix aspersa, Quart. J. Microscop. Sci. 104 (3rd series):401–412 (1963).

    CAS  Google Scholar 

  78. C. Lazdunski and M. Lazdunski, Etude cinétique du mécanisme d’action catalytique de la phosphatase alcaline d’Escherichia coli, Biochim. Biophys. Acta 113:551–566 (1966).

    Article  PubMed  CAS  Google Scholar 

  79. R. S. Lee, Phosphatases in the neurones of Locusta migratoria, Quart. J. Microscop. Sci. 104(3rd series):475–481 (1963).

    CAS  Google Scholar 

  80. W. Lierse, Die alkalische Phosphatase in den Hirngefässen der Maus (Mus muris) während der postnatalen Entwicklung, Z. Mikroskop.-Anat. Forsch. 70:48–61 (1963).

    CAS  Google Scholar 

  81. O. H. Lowry, Quantitative analysis of single nerve cell bodies, Chap. IV, in Progress in Neurobiology. II. Ultrastructure and Cellular Chemistry of Neural Tissue (H. Waelsch, ed.), pp. 69–82, Hoeber-Harper, New York (1957).

    Google Scholar 

  82. O. H. Lowry, N. R. Roberts, K. Y. Leiner, M.-L. Wu, A. L. Farr, and R. W. Albers, The quantitative histochemistry of brain. III. Amnion’s horn, J. Biol. Chem. 207:39–49 (1954).

    PubMed  CAS  Google Scholar 

  83. J. C. Mathies, Preparation and properties of highly purified alkaline phosphatase from swine kidneys, J. Biol. Chem. 223:1121–1127 (1958).

    Google Scholar 

  84. R. J. McAlpine, Selected observations on the early development of the motor neurons in the brain stem and spinal cord of the white rat as revealed by the alkaline phosphatase technique, J. Comp. Neurol. 113: 211–243 (1959).

    Article  CAS  Google Scholar 

  85. R. E. McCaman and E. Robins, Quantitative biochemical studies of Wallerian degeneration in the peripheral and central nervous systems. II. Twelve enzymes, J. Neurochem. 5: 32–42 (1959).

    Article  CAS  Google Scholar 

  86. A. R. McNabb, Enzymes of gray matter and white matter of dog brain, Can. J. Med. Sci. 29: 208–215 (1951).

    PubMed  CAS  Google Scholar 

  87. P. Meyer, Histochemistry of the developing human brain. I. Alkaline phosphatase, acid phosphatase, and AS esterase in the cerebellum, Acta Psychiat. Neurol. Scand. 39:123–138 (1963).

    Article  CAS  Google Scholar 

  88. E. Minker and G. Domján, Histochemical studies of phosphatases in the intramural ganglion cells of the intestinal canal of Helix pomatia, Acta Biol. Acad. Sci. Hung. 12:137–140 (1961).

    CAS  Google Scholar 

  89. F. Moog, The distribution of phosphatase in the spinal cord of chick embryos of one to eight days incubation. Proc. Natl. Acad. Sci. (U.S.) 29:176–183 (1943).

    Article  CAS  Google Scholar 

  90. F. Moog, Localizations of alkaline and acid phosphatases in the early embryogenesis of the chick, Biol. Bull. 86:51–80 (1944).

    Article  CAS  Google Scholar 

  91. R. K. Morton, The purification of alkaline phosphatases of animal tissues, Biochem. J. 57:595–603 (1954).

    PubMed  CAS  Google Scholar 

  92. R. K. Morton, The phosphotransferase activity of phosphotases. 2. Studies with alkaline phosphomonoesterases and some substrate-specific phosphatases, Biochem. J. 70:139–150 (1958).

    PubMed  CAS  Google Scholar 

  93. R. K. Morton, The phosphototransferase activity of phosphatases. 3. Comparison of enzymic catalysis by acid phosphatase with nonenzymic catalysis at acid pH values, Biochem. J. 70: 150–155 (1958).

    PubMed  CAS  Google Scholar 

  94. D. W. Moss, R. H. Eaton, J. K. Smith, and L. G. Whitby, Association of inorganicpyrophosphatase activity with human alkaline-phosphatase preparations, Biochem. J. 102:53–57 (1967).

    PubMed  CAS  Google Scholar 

  95. J. Mulnard, Contribution à la connaissance des enzymes dans l’ontogénèse. Les phosphomonestérases acide et alcaline dans le développement du rat et de la souris. Arch. Biol. (Liege) 66:525–685 (1955).

    CAS  Google Scholar 

  96. D. Naidoo, The activity of 5′-nucleotidase determined histochemically in the developing rat brain, J. Histochem. Cytochem. 10:421–434 (1962).

    Article  CAS  Google Scholar 

  97. D. Naidoo, Alkaline phosphatase at the site of cerebral injury, Acta Histochem. 15:182–184 (1963).

    PubMed  CAS  Google Scholar 

  98. D. Naidoo and O. E. Pratt, The localization of some acid phosphatases in brain tissue, J. Neurol. Neurosurg. Psychiat. 14:287–294 (1951).

    Article  PubMed  CAS  Google Scholar 

  99. D. Naidoo and O. E. Pratt, the development of adenosine 5′-phosphatase activity with the maturation of the rat cerebral cortex, Enzymologia 16:298–304 (1954).

    PubMed  CAS  Google Scholar 

  100. K. Nandy and G. H. Bourne, Alkaline phosphatases in brain and spinal cord, Nature 200:1216–1217 (1963).

    Article  PubMed  CAS  Google Scholar 

  101. K. Nandy and G. H. Bourne, Histochemical studies on the distribution of acid naphthol AS-phosphatase in the spinal cord of the rat, Acta Anat. 61:84–91 (1965).

    Article  PubMed  CAS  Google Scholar 

  102. V. N. Nigam, H. M. Davidson, and W. H. Fishman, Kinetics of hydrolysis of the orthophosphate monoesters of phenol, p-nitrophenol, and glycerol by human prostatic acid phosphatase, J. Biol. Chem. 234:1550–1554 (1959).

    PubMed  CAS  Google Scholar 

  103. V. N. Nigam and W. H. Fishman, Catalysis of phosphoryl transfer by prostatic acid phosphatase, J. Biol. Chem. 234:2394–2398 (1959).

    PubMed  CAS  Google Scholar 

  104. A. B. Novikoff, Lysosomes and related particles, Chap. 6, in The Cell (J. Brachet and A. E. Mirsky, eds.), Vol. 2, pp. 423–488, Academic Press, New York (1961).

    Google Scholar 

  105. A. B. Novikoff and S. Goldfischer, Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies, Proc. Natl. Acad. Sci. (U.S.) 47:802–810 (1961).

    Article  CAS  Google Scholar 

  106. R. Nüske and H. Venner, Die Isoenzymfraktionen der unspezifischen alkalischen Phosphomonoesterase, Biochem. Z. 346:226–243 (1966).

    Google Scholar 

  107. S. Olsen and C. Petri, Histochemical localization of acid phosphatase in the human cerebellar cortex, Acta Psychiat. Neurol. Scand. 39:112–122 (1963).

    Article  CAS  Google Scholar 

  108. B. Pinner and J. B. Campbell, Alkaline phosphatase activity of incisures and nodes during degeneration and regeneration of peripheral nerve fibers, Exptl. Neurol. 12:159–172 (1965).

    Article  CAS  Google Scholar 

  109. B. Pinner, J. F. Davison, and J. B. Campbell, Alkaline phosphatase in peripheral nerves, Science 145:936–938 (1964).

    Article  PubMed  CAS  Google Scholar 

  110. D. J. Plocke, C. Levinthal, and B. L. Vallee, Alkaline phosphatase of Escherichia coli: A zinc metalloenzyme, Biochemistry 1:373–378 (1962).

    Article  PubMed  CAS  Google Scholar 

  111. L. F. Pomazanskaya, Phosphatidic acid phosphatase of chick-brain microsomes during ontogeny, Dokl. Akad. Nauk SSSR 155:208–211 (1964). [Translation, Dokl. Biochem. Sect. 154–156:56–58 (1964).]*

    CAS  Google Scholar 

  112. L. F. Pomazanskaya, Phosphatidic acid phosphatase in the subcellular fractions of the chick brain during development, Zh. Evolyutsionnoi Biokhim. i Fiziol. 1:320–324 (1965). [Biol Abstr. 47 (1966), #67244.]†

    CAS  Google Scholar 

  113. C. M. Pomerat, W. J. Hendelman, C. W. Raiborn, Jr., and J. F. Massey, Dynamic activities of nervous tissue in vitro, Chap. 3, in The Neuron (H. Hydén, ed.), pp. 119–178, Elsevier Publishing Co., New York (1967).

    Google Scholar 

  114. L. Raijman, S. Grisolia, and H. Edelhoch, Further purification and properties of brain acyl phosphatase, J. Biol. Chem. 235:2340–2342 (1960).

    PubMed  CAS  Google Scholar 

  115. J. L. Reis, Über die spezifische Phosphatase der Nervengewebe, Enzymologia 2:110–116 (1937).

    CAS  Google Scholar 

  116. J. L. Reis, The specificity of phosphomonoesterases in human tissue, Biochem. J. 48:548–551 (1951).

    PubMed  CAS  Google Scholar 

  117. E. Robins and D. E. Smith, A quantitative histochemical study of eight enzymes of the cerebellar cortex and subjacent white matter in the monkey, Res. Publ. Assoc. Res. Nervous Mental Disease 32: 305–327 (1953).

    CAS  Google Scholar 

  118. K. T. Rogers, Studies on chick brain of biochemical differentiation related to morphological differentiation and onset of function. III. Histochemical localization of alkaline phosphatase, J. Exptl. Zool. 145:49–59 (1960).

    Article  CAS  Google Scholar 

  119. K. T. Rogers, Cell fraction studies on nuclear vs. cytoplasmic localization of alkaline phosphatase in the very early development of the chick brain. Exptl. Cell Res. 34:100–110 (1964).

    Article  PubMed  CAS  Google Scholar 

  120. K. T. Rogers, L. De Vries, J. A. Kepler, C. R. Kepler, and E. R. Speidel, Studies on chick brain of biochemical differentiation related to morphological differentiation and onset of function. II. Alkaline phosphatase and Cholinesterase levels and onset of function. J. Exptl. Zool. 144:89–103 (1960).

    Article  CAS  Google Scholar 

  121. A. Roitman and S. Glatt, Isolation of phospholipase-C from rat brain, Israel J. Chem. 1:190 (1963).

    Google Scholar 

  122. S. P. R. Rose, The localization of cerebral phosphoprotein phosphatase, Biochem. J. 83: 614–622 (1962).

    PubMed  CAS  Google Scholar 

  123. S. P. R. Rose and P. J. Heald, A phosphoprotein phosphatase from ox brain, Biochem. J. 81:339–347 (1961).

    PubMed  CAS  Google Scholar 

  124. F. Rossi and E. Reale, The somite state of human development studied with the histochemical reaction for the demonstration of alkaline glycerophosphatase, Acta Anat. 30:656–681 (1957).

    Article  PubMed  CAS  Google Scholar 

  125. J. G. Salway, J. L. Harwood, M. Kai, G. L. White, and J. N. Hawthorne, Enzymes of phosphoinositide metabolism during rat brain development, J. Neurochem. 15:221–226 (1968).

    Article  PubMed  CAS  Google Scholar 

  126. J. G. Salway, M. Kai, and J. N. Hawthorne, Triphosphoinositide Phosphomonoesterase activity in nerve cell bodies, neuroglia and subcellular fractions from whole rat brain, J. Neurochem. 14:1013–1024 (1967).

    Article  PubMed  CAS  Google Scholar 

  127. T. Samorajski, Changes in phosphatase activity following transection of the sciatic nerve, J. Histochem. Cytochem. 5:15–27 (1957).

    Article  PubMed  CAS  Google Scholar 

  128. * In preparing this review, the English translation was used instead of the original article in Russian.

    Google Scholar 

  129. † In preparing this review, the abstract was used instead of the original article in Russian.

    Google Scholar 

  130. T. Samorajski and G. R. Fitz, Histochemical analysis of Phosphomonoesterase in the hypothalamus and pituitary gland of the rat, Lab. Invest, 9:517–534 (1960).

    PubMed  CAS  Google Scholar 

  131. T. Samorajski and G. R. Fitz, Phosphomonoesterase changes associated with spinal cord chromatolysis, Lab. Invest. 10:129–143 (1961).

    PubMed  CAS  Google Scholar 

  132. T. Samorajski and J. McCloud, Alkaline Phosphomonoesterase and blood brain permeability, Lab. Invest. 10:492–501 (1961).

    PubMed  CAS  Google Scholar 

  133. M. Sandler and G. H. Bourne, Histochemical studies of phosphatases separated by starch gel electrophoresis, Exptl. Cell. Res. 24:174–177 (1960).

    Article  Google Scholar 

  134. S. Saraswathi and B. K. Bachhawat, Heterogeneity of alkaline phosphatase in sheep brain. J. Neurochem. 13:237–246 (1966).

    Article  PubMed  CAS  Google Scholar 

  135. T. G. Scott, A unique pattern of localization within the cerebellum of the mouse, J. Comp. Neurol. 122:1–7 (1964).

    Article  Google Scholar 

  136. U. S. Seal and F. Binkley, An inorganic pyrophosphatase of swine brain, J. Biol. Chem. 228:193–199 (1957).

    PubMed  CAS  Google Scholar 

  137. T. R. Shanthaveerappa and G. H. Bourne, The thiamine pyrophosphatase technique as an indicator of the morphology of the Golgi apparatus in the neurons, Acta Histochem. 22:155–178 (1965).

    PubMed  CAS  Google Scholar 

  138. N. N. Sharma. Studies on the histochemical distribution of glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, β-glucuronidase and glucan Phosphorylase in olfactory bulb of rat, Acta Histochem. 27:165–171 and plate X (1967).

    PubMed  CAS  Google Scholar 

  139. N. Shimizu, Histochemical studies on the phosphatase of the nervous system, J. Comp. Neurol. 93:201–217 (1950).

    Article  PubMed  CAS  Google Scholar 

  140. I. de Sibrik and D. S. O’Doherty, Phosphatases and phospholipases in the central nervous system, Arch. Neurol. 2:537–546 (1960).

    Article  Google Scholar 

  141. M. Silva-Pinto and A. Coimbra, Comparative studies of the central nervous system phosphatases employing the Gomori and azo-dye methods, Acta Anat. 54:157–173 (1963).

    Article  PubMed  CAS  Google Scholar 

  142. J. Sjöstrand, Changes of nucleoside phosphatase activity in the hypoglossal nucleus during nerve regeneration, Acta Physiol. Scand. 67:219–228 (1966).

    Article  PubMed  Google Scholar 

  143. H. Takamatsu, Histologische und biochemische Studien über die Phosphatase (I. Mitteilung). Histochemische Untersuchungsmethodik der Phosphatase und der Verteilung in verschiedenen Organen und Geweben, Transactiones Societatis Pathologicae Japonicae (Nippon Byori Gakkai Kaishi) 29:492–498 (1939).

    Google Scholar 

  144. S. Talanti, E. Kivalo, and A Kivalo. The acid phosphatase activity in the hypothalamic magnocellular nuclei of the cow embryo, Acta Endocrinol. 29:302–306 (1958).

    PubMed  CAS  Google Scholar 

  145. H. B. Tewari and G. H. Bourne, The structure and biochemical identity of the neurokeratin network of myelinated nerve fibers, Bibliotheca Anat. 2:111–127 (1961).

    Google Scholar 

  146. H. B. Tewari and G. H. Bourne, New morphological identity and functional significance of the neurokeratin network of myelinated nerve fibers, Pathol. Biol. Semaine Hop. 9:919–924 (1961).

    CAS  Google Scholar 

  147. H. B. Tewari and G. H. Bourne, Histochemical evidence of metabolic cycles in spinal ganglion cells of rat, J. Histochem. Cytochem. 10:42–64 (1962).

    Article  CAS  Google Scholar 

  148. H. B. Tewari and G. H. Bourne, Histochemical studies on the distribution of alkaline and acid phosphatases and 5-nucleotidase in the cerebellum of rat, J. Anat. 97:65–72, (1963).

    PubMed  CAS  Google Scholar 

  149. H. B. Tewari and G. H. Bourne, On the intracellular distribution of glucose-6-phosphatase in the neurons of cerebrum and trigeminal ganglion of the rat, J. Histochem. Cytochem. 11:121–122 (1963).

    Article  CAS  Google Scholar 

  150. H. B. Tewari and G. H. Bourne, Histochemical studies on the distribution of

    Google Scholar 

  151. alkaline and acid phosphatases and 5-nucleotidase in the trigeminal ganglion cells of rat, Acta Histochem. 17:197–207 (1964).

    Google Scholar 

  152. H. B. Tewari and P. P. Sood, On the distribution of acid phosphatase among the olfactory neurons of some vertebrates, Histochemie 11:62–70 (1967).

    Article  PubMed  CAS  Google Scholar 

  153. W. Thompson and R. M. C. Dawson, The hydrolysis of triphosphoinositide by extracts of ox brain, Biochem. J. 91:233–236 (1964).

    PubMed  CAS  Google Scholar 

  154. W. Thompson and R. M. C. Dawson, The triphosphoinositide phosphodiesterase of brain tissue, Biochem. J. 91:237–243 (1964).

    PubMed  CAS  Google Scholar 

  155. K. K. Tsuboi and P. B. Hudson, Acid phosphatase. III. Specific kinetic properties of highly purified human prostatic Phosphomonoesterase, Arch. Biochem. Biophys. 55:191–205 (1955).

    Article  PubMed  CAS  Google Scholar 

  156. B. L. Vallee, Chap. 34, Zinc. in Mineral Metabolism (C. L. Comar and F. Bronner, eds.), Vol. IIB, pp. 443–482, Academic Press, New York (1962).

    Google Scholar 

  157. M. A. Verity and W. J. Brown, Structure-linked activity of lysosomal enzymes in the developing mouse brain, J. Neurochem. 15:69–80 (1968).

    Article  PubMed  CAS  Google Scholar 

  158. I. B. Wilson, J. Dayan, and K. Cyr, Some properties of alkaline phosphatase from Escherichia coli: Transphosphorylation, J. Biol. Chem. 239:4182–4185 (1964).

    PubMed  CAS  Google Scholar 

  159. G. B. Wislocki and E. W. Dempsey, The chemical cytology of the chorioid [sic] plexus and blood brain barrier of the rhesus monkey (Macaca mulatto), J. Comp. Neurol. 88:319–345 (1948).

    Article  CAS  Google Scholar 

  160. A. Wolf, E. A. Kabat, and W. Newman, Histochemical studies on tissue enzymes. III. A study of the distribution of acid phosphatases with special reference to the nervous system. Am. J. Pathol. 19:423–439 (1943).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Cohen, S.R. (1970). Phosphatases. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics