Skip to main content

Abstract

Cholesterol is found in high concentration in adult nervous tissue. Large amounts of the sterol are found in the white matter and histochemical studies show cholesterol to be a major constituent of the myelin sheath. The subcellular distribution of cholesterol has also been determined in fractions separated by differential and gradient centrifugation. All membrane fractions contain cholesterol but the highest proportion is found in the myelin layer (Table I). The localization of cholesterol in membranes and especially its presence in myelin has an overriding influence on the metabolism of brain sterols. Thus, cholesterol synthesis is highly active during myelination of the brain (see LeBaron, Chapter 21 of Volume III of this series) whereas in the adult it appears from isotope studies that there is relatively little synthesis and turnover of cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. L. Cuzner and A. N. Davison, The lipid composition or rat brain myelin and subcellular fractions during development, Biochem. J. 106:29–34 (1968).

    PubMed  CAS  Google Scholar 

  2. J. Eichberg, V. P. Whittaker, and R. M. C. Dawson, Distribution of lipids in subcellular particles in guinea pig brain, Biochem. J. 92:91–100 (1964).

    PubMed  CAS  Google Scholar 

  3. J. T. W. Dickerson and J. Dobbing, Prenatal and postnatal growth and development of the central nervous system of the pig, Proc. Roy. Soc. 166:384–395 (1967).

    Article  Google Scholar 

  4. J. Dobbing, in Malnutrition, Learning and Behavior (N. S. Schrimshaw, ed.), in press, MIT Press, Cambridge, Mass.

    Google Scholar 

  5. S. R. Korey and A. Stein, in Regional Neurochemistry (S. S. Kety and J. Elkes, eds.), pp. 175–189, C. C. Thomas, Springfield, Ill. (1961).

    Google Scholar 

  6. H. W. Moser and M. L. Karnovsky, Studies on the biosynthesis of glycolipids and other lipids of the brain, J. Biol. Chem. 234:1990–1997 (1959).

    PubMed  CAS  Google Scholar 

  7. S. Jacobson, Sequence of myelinization in the brain of the albino rat, J. Comp. Neurol. 121:5–29(1963).

    Article  PubMed  CAS  Google Scholar 

  8. E. T. Pritchard and N. E. Nichol, Cholesterol esterase activity in developing rat brain, Biochim. Biophys. Acta 84:781–782 (1964).

    PubMed  CAS  Google Scholar 

  9. J. J. Kabara and G. T. Okita, Brain cholesterol: biosynthesis with selected precursors in vivo, J. Neurochem. 7:298–304 (1961).

    Article  PubMed  CAS  Google Scholar 

  10. A. N. Davison, J. Dobbing, R. S. Morgan, and G. Payling Wright, Metabolism of myelin: the persistence of [4–14C] cholesterol in the mammalian central nervous system, Lancet 1:658–660 (1959).

    Article  PubMed  CAS  Google Scholar 

  11. J. Dobbing, The entry of cholesterol into developing rat brain, J. Neurochem. 10: 739–742 (1963).

    Article  CAS  Google Scholar 

  12. R. Clarenburg, I. L. Chaikoff, and M.D. Morris, Incorporation of injected cholesterol into the myelinating brain of the 17 day old rabbit, J. Neurochem. 10:135–143 (1963).

    Article  PubMed  CAS  Google Scholar 

  13. A. N. Davison, Brain sterol metabolism, Advan. Lipid Res. 3:171–196 (1965).

    CAS  Google Scholar 

  14. A. N. Davison, in Applied Neurochemistry (A. N. Davison and J. Dobbing, eds.), pp. 178, Blackwell, Oxford (1968).

    Google Scholar 

  15. J. J. Kabara, Brain cholesterol. XL A review of biosynthesis in adult mice, J. Am. Oil Chemists’ Soc. 42:1003–1008 (1965).

    Article  CAS  Google Scholar 

  16. D. Kritchevsky, S. A. Tepper, N. W. DiTullio, and W. L. Holmes, Desmosterol in developing rat brain, J. Am. Oil Chemists’ Soc. 42:1024–1028 (1965).

    Article  CAS  Google Scholar 

  17. S. Garattini, P. Paoletti, and R. Paoletti, The incorporation of 2–14C mevalonic acid into cholesterol and fatty acids of brain and liver in vitro, Arch. Biochem. Biophys. 80:210–211 (1959).

    Article  CAS  Google Scholar 

  18. S. Garattini, P. Paoletti, and R. Paoletti, Lipid biosynthesis in vivo from acetate-1-C14 and mevalonic-2-C14 acid, Arch. Biochem. Biophys. 84:253–255 (1959).

    Article  PubMed  CAS  Google Scholar 

  19. H. J. Nicholas and B. E. Thomas, Intracerebral incorporation of [2-14C] mevalonic acid into adult rat brain squalene and cholesterol, Biochim. Biophys. Acta 36:583–585 (1959).

    Article  PubMed  CAS  Google Scholar 

  20. H. J. Nicholas and B. E. Thomas, Cholesterol metabolism and the blood-brain barrier: An experimental study with [2-C14]-sodium acetate, Brain 84:320–328 (1961).

    Article  PubMed  CAS  Google Scholar 

  21. R. Fumagalli, E. Grossi, M. Poggi, P. Paoletti, and S. Garattini, Cholesterol synthesis in rat brain: Differential incorporation of mevalonolactone-2-C14 and potassium mevalonate-2-C14, Arch. Biochem. Biophys. 99:529–533 (1962).

    Article  PubMed  CAS  Google Scholar 

  22. W. A. Fish, J. E. Boyd, and W. M. Stokes, Metabolism of cholesterol in the chick embryo. III. Localization and turnover of desmosterol (24-dehydrocholesterol), J. Biol. Chem. 237:334–337 (1962).

    PubMed  CAS  Google Scholar 

  23. T. J. Holstein, W. A. Fish, and W. M. Stokes, Pathway of cholesterol biosynthesis in the brain of the neonatal rat, J. Lipid Res. 7:634–638 (1966).

    PubMed  CAS  Google Scholar 

  24. D. Kritchevsky and W. L. Holmes, Occurrence of desmosterol in developing rat brain, Biochem. Biophys. Res. Commun. 7:128–131 (1962).

    Article  PubMed  CAS  Google Scholar 

  25. R. Fumagalli and R. Paoletti, The identification and significance of desmosterol in the developing human and animal brain. Life Sci. 5:291–295 (1963).

    Article  PubMed  CAS  Google Scholar 

  26. R. Fumagalli, E. Grossi, P. Paoletti, and R. Paoletti, Studies on lipids in brain tumours I, J. Neurochem. 11:561–565 (1964).

    Article  PubMed  CAS  Google Scholar 

  27. T. G. Scott and V. C. Barber, An enzyme histochemical and biochemical study of the effect of an inhibitor of cholesterol synthesis on myelinating mouse brain, J. Neurochem. 11:423–429 (1964).

    Article  PubMed  CAS  Google Scholar 

  28. T. J. Scallen, R. M. Condie, and J. Schroepfer, Inhibition by triparanol of cholesterol formation in the brain of the newborn mouse, J. Neurochem. 9:99–103 (1962).

    Article  PubMed  CAS  Google Scholar 

  29. M. E. Smith, R. Fumagalli, and R. Paoletti, The occurrence of desmosterol in myelin of developing rats, Life Sci. 6:1085–1091 (1967).

    Article  PubMed  CAS  Google Scholar 

  30. N. L. Banik and A. N. Davison, Desmosterol in rat brain myelin, J. Neurochem. 14:594–595 (1967).

    Article  PubMed  CAS  Google Scholar 

  31. R. Fumagalli, R. Niemiro, and R. Paoletti, Inhibition of the biogenetic reaction sequence of cholesterol in rat tissues through inhibition with AY-9944, J. Am. Oil Chemists’ Soc. 42:1018–1023 (1965).

    Article  CAS  Google Scholar 

  32. R. Niemiro and R. Fumagalli, Studies on the inhibitory mechanism of some hypo-cholesterolemic agents on 7-dehydrocholesterol Δ7-bond reductase activity, Biochim. Biophys. Acta 98:624–631 (1965).

    Article  PubMed  CAS  Google Scholar 

  33. D. Dvornik, Inhibition of cholesterol biosynthesis and its usefulness, Proc. Intern. Symp. Drug Res. (Cand.) (June 1967).

    Google Scholar 

  34. R. J. Rossiter, in Metabolism of the Nervous System (D. Richter, ed.), pp. 355–380, Pergamon Press, London (1957).

    Google Scholar 

  35. H. J. Nicholas, Cholesterol, J. Kansas Med. Soc. 62:358–361 (1961).

    PubMed  CAS  Google Scholar 

  36. H. J. Nicholas and R. T. Aexel, Biosynthesis of cholesterol in cell-free extracts of adult rat brain, Federation Proc. 26:342 (1967).

    Google Scholar 

  37. H. Waelsch, W. M. Sperry, and V. A. Stoyanoff, A study of the synthesis and deposition of lipids in brain and other tissues with deuterium as an indicator, J. Biol. Chem. 135:291–296(1940).

    CAS  Google Scholar 

  38. H. Waelsch, W. M. Sperry, and V. A. Stoyanoff, Lipid metabolism in brain during myelination, J. Biol. Chem. 135:297–302 (1940).

    CAS  Google Scholar 

  39. K. Bloch, B. N. Berg, and D. Rittenberg, Biological conversion of cholesterol to cholic acid, J. Biol. Chem. 149:511–517 (1943).

    CAS  Google Scholar 

  40. J. Dobbing, The blood-brain barrier, Physiol. Rev. 41:130–188 (1961).

    PubMed  CAS  Google Scholar 

  41. J. Dobbing, in Applied Neurochemistry (A. N. Davison and J. Dobbing, eds.), p. 317, Blackwell, Oxford (1968).

    Google Scholar 

  42. D. Kritchevsky and V. Defendi, Persistence of sterols other than cholesterol in chicken tissue, Nature (Lond.) 192:71 (1961).

    Article  CAS  Google Scholar 

  43. D. Kritchevsky and V. Defendi, Deposition of tritium labeled sterols (cholesterol sitosterol, lanosterol) in brain and other organs of the growing chicken, J. Neurochem. 9:421–425 (1962).

    Article  PubMed  CAS  Google Scholar 

  44. M. L. Cuzner, A. N. Davison, and N. A. Gregson, Turnover of brain mitochondrial membrane lipids, Biochem. J. 101:618–626 (1966).

    PubMed  CAS  Google Scholar 

  45. M. E. Smith and L. F. Eng. The turnover of the lipid components of myelin, J. Am. Oil Chemists Soc. 42:1013–1018 (1965).

    Article  CAS  Google Scholar 

  46. A. N. Davison, R. S. Morgan, M. Wajda, and G. Payling Wright, Metabolism of myelin lipids: Incorporation of [3–14C] serine in brain lipids of the developing rabbit and their persistence in the central nervous system, J. Neurochem. 4:360–365 (1959).

    Article  CAS  Google Scholar 

  47. A. N. Davison and M. Wajda, Persistence of cholesterol-4–14C in the central nervous system, Nature (Lond.) 183:1606–1607 (1959).

    Article  CAS  Google Scholar 

  48. A. Torvik and R. L. Sidman, Autoradiographic studies on lipid synthesis in the mouse brain during postnatal development, J. Neurochem. 12:555–565 (1965).

    Article  PubMed  CAS  Google Scholar 

  49. D. Nicholls and R. J. Rossiter, Metabolism of lipids of peripheral nerve regenerating after crush, J. Neurochem. 11:813–818 (1964).

    Article  PubMed  CAS  Google Scholar 

  50. G. Simon, Cholesterol ester in degenerating nerve: Origin of cholesterol moiety, Lipids 1:369–370 (1966).

    Article  PubMed  CAS  Google Scholar 

  51. A. N. Davison, in Metabolism and Physiological Significance of Lipids (R. M. C. Dawson and D. N. Rhodes, eds.), pp. 527–540, Wiley, London (1964).

    Google Scholar 

  52. A. N. Davison, Metabolically inert proteins of the central and peripheral nervous system, muscle and tendon, Biochem. J. 78:272–282 (1961).

    PubMed  CAS  Google Scholar 

  53. A. A. Khan and J. P. Folch, Cholesterol turnover in brain subcellular particles, J. Neurochem. 14:1099–1105 (1967).

    Article  PubMed  CAS  Google Scholar 

  54. L. F. Eng and M. E. Smith, The cholesterol complex in the myelin membrane, Lipids 1:296(1966).

    Article  PubMed  CAS  Google Scholar 

  55. J. P. Folch, in Psychiatric Research (A. Drinker, ed.), p. 23, Harvard Univ. Press, Cambridge, Mass. (1947).

    Google Scholar 

  56. C. D. Joel, H. W. Moser, G. Majno, and M. L. Karnovsky, Effects of bis-(monoiso-propylamino)-fluorophosphine oxide (mipafox) and of starvation on the lipids in the nervous system of the hen, J. Neurochem. 14:479–488 (1967).

    Article  PubMed  CAS  Google Scholar 

  57. M. E. Smith, The effect of fasting on lipid metabolism of the central nervous system of the rat, J. Neurochem. 10:531–536 (1963).

    Article  PubMed  CAS  Google Scholar 

  58. J. Dobbing, The effect of undernutrition on myelination in the central nervous system, Biol. Neonatorum 9:132–147 (1966).

    Article  CAS  Google Scholar 

  59. J. W. T. Dickerson, J. Dobbing, and R. A. McCance, The effect of undernutrition and subsequent rehabilitation on the growth and composition of the central nervous system of the rat, Brain 90:897–906 (1967).

    Article  PubMed  CAS  Google Scholar 

  60. A. N. Davison and J. Dobbing, Myelination as a vulnerable period in brain development, Brit. Med. Bull. 22:40–44 (1966).

    PubMed  CAS  Google Scholar 

  61. J. T. W. Dickerson, J. Dobbing and R. A. McCance, The effect of undernutrition on the postnatal development of the brain and cord in pigs, Proc. Roy. Soc. Ser. B 166:396–407 (1967).

    Article  Google Scholar 

  62. J. Dobbing and E. M. Widdowson, The effect of undernutrition and subsequent rehabilitation on myelination of rat brain as measured by its composition, Brain 88: 357–366 (1965).

    Article  PubMed  CAS  Google Scholar 

  63. A. R. Buchanan and J. E. Roberts, Relative lack of myelin in optic tracts as result of underfeeding in the young albino rat, Proc. Soc. Exptl. Biol. Med. (N. Y.) 69:101–104 (1948).

    CAS  Google Scholar 

  64. J. Dobbing, in Applied Neurochemistry (A. N. Davison and J. Dobbing, eds.), pp. 287, Blackwell, Oxford (1968).

    Google Scholar 

  65. V. Novakova, J. Faltin, V. Flandera, P. Hahn, and O. Koldovsky, Effect of early and late weaning on learning in adult rats, Nature (Lond.) 193:280 (1962).

    Article  CAS  Google Scholar 

  66. R. H. Barnes, S. R. Cunnold, R. R. Zimmermann, H. Simmons, R. B. Macleod, and L. Krook, Influence of nutritional deprivations in early life on learning behavior of rats as measured by performance in a water maze, J. Nutr. 89:399–410 (1966).

    PubMed  CAS  Google Scholar 

  67. J. Myslivecek, M. W. Fox, and J. Zahlava, Maturation retardée de l’activité bio-éléctrique corticale provoquée par malnutrition, J. Physiol. (Paris) 58:572–573 (1966).

    Google Scholar 

  68. W. G. Pond, R. H. Barnes, R. B. Bradfield, E. Kwong, and L. Krook, Effect of dietary energy intake or protein deficiency symptoms and body composition of baby pigs fed equalised but suboptimal amounts of protein, J. Nutr. 85:57–66 (1965).

    PubMed  CAS  Google Scholar 

  69. J. McC. Howell, A. N. Davison, and J. M. Oxberry, Biochemical and neuropatho-logical changes in Swayback, Res. Vet. Sci. 5:376–384 (1964).

    Google Scholar 

  70. A. N. Davison and J. M. Oxberry, A comparison of the composition of white matter lipids in Swayback and Border disease of lambs, Res. Vet. Sci. 7:67–71 (1966).

    PubMed  CAS  Google Scholar 

  71. L. Crome, V. Tymms, and L. I. Woolf, A chemical investigation of the defects of myelination in phenylketonuria, J. Neurol. Neurosurg. Psychiat. 25:143–148 (1962).

    Article  PubMed  CAS  Google Scholar 

  72. B. Gerstl, N. Malamud, L. F. Eng, and R. B. Hayman, Lipid alterations in human brains in phenylketonuria, Neurology 17:51–58 (1967).

    Article  PubMed  CAS  Google Scholar 

  73. J. N. Cumings, The cerebral lipids and mental retardation, Proc. 2nd. Intern. Congr. Ment. Retard., Vienna, Part 1, 111–122 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Davison, A.N. (1970). Cholesterol Metabolism. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics