Skip to main content

Abstract

Present interest in the inositol lipids of brain began with the isolation of the diphosphoinositide fraction by Folch(1) and the observation by Dawson(2) that 32P was rapidly incorporated into these lipids in vitro. More recent work has shown that there are three brain phosphoinositides, phospha-tidylinositol or monophosphoinositide (I), diphosphoinositide (II), and triphosphoinositide (III). The chemistry and metabolism of these compounds was reviewed in some detail by Hawthorne and Kemp(3) in 1964, so this chapter concentrates on work that has appeared since then, giving brief summaries of earlier studies only where necessary to complete the account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Folch, Complete fractionation of brain cephalin: Isolation from it of phosphatidyl serine, phosphatidyl ethanolamine and diphosphoinositide, J. Biol. Chem. 177:497–504 (1949).

    PubMed  CAS  Google Scholar 

  2. R. M. C. Dawson, The measurement of 32P labelling of individual kephalins and lecithin in a small sample of tissue, Biochim. Biophys. Acta 14:374–379 (1954).

    Article  PubMed  CAS  Google Scholar 

  3. J. N. Hawthorne and P. Kemp, The brain phosphoinositides, Advan. Lipid Res. 2: 127–166 (1964).

    CAS  Google Scholar 

  4. G. Hauser and V. N. Finelli, Biosynthesis of free and phosphatide myo-inositol from glucose by mammalian tissue slices, J. Biol. Chem. 238:3224–3228 (1963).

    PubMed  CAS  Google Scholar 

  5. J. W. Chen and F. C. Charalampous, D-Inositol 1-phosphate as intermediate in the biosynthesis of inositol from glucose 6-phosphate, J. Biol. Chem. 241:2194–2199 (1966).

    PubMed  CAS  Google Scholar 

  6. F. Eisenberg, Jr., and G. H. Bolden, D-myo-Inositol 1-phosphate, an intermediate in the biosynthesis of inositol in the mammal, Biochem. Biophys. Res. Commun. 21: 100–105 (1965).

    Article  PubMed  CAS  Google Scholar 

  7. B. W. Agranoff, R. M. Bradley, and R. V. Brady, The enzymatic synthesis of inositol phosphatide, J. Biol. Chem. 233:1077–1083 (1958).

    PubMed  CAS  Google Scholar 

  8. H. Paulus and E. P. Kennedy, The enzymatic synthesis of inositol monophosphatide, J. Biol. Chem. 235:1303–1311 (1960).

    PubMed  CAS  Google Scholar 

  9. M. Dietz and P. Albersheim, The enzymic phosphorylation of myo-inositol, Biochem. Biophys. Res. Commun. 19:598–603 (1965).

    Article  PubMed  CAS  Google Scholar 

  10. W. Thompson, K. P. Strickland, and R. J. Rossiter, Biosynthesis of phosphatidylinositol in rat brain, Biochem. J. 87:136–142 (1963).

    PubMed  CAS  Google Scholar 

  11. F. Possmayer and K. P. Strickland, Incorporation of a-glycerophosphate-32P into the lipids of rat brain preparations, Can. J. Biochem. 45:53–69 (1967).

    CAS  Google Scholar 

  12. K. P. Strickland, Phosphorylation of diglycerides by rat brain, Can. J. Biochem. Physiol. 40:247–259 (1962).

    Article  PubMed  CAS  Google Scholar 

  13. R. A. Pieringer and L. E. Hokin, Biosynthesis of phosphatidc acid from lyso-phosphatidic acid and palmityl CoA, J. Biol. Chem. 237:659–663 (1962).

    PubMed  CAS  Google Scholar 

  14. R. W. Keenan and L. E. Hokin, The identification of lysophosphatidylinositol and its enzymic conversion to phosphatidylinositol, Biochim. Biophys. Acta 60:428–430 (1962).

    Article  PubMed  CAS  Google Scholar 

  15. D. E. Slagel, J. C. Dittmer, and C. B. Wilson, Lipid composition of human glial tumour and adjacent brain, J. Neurochem. 14:789–798 (1967).

    Article  PubMed  CAS  Google Scholar 

  16. H. Brockerhoff and C. E. Ballou, Phosphate incorporation in brain phosphoinosi-tides, J. Biol. Chem. 237:49–52 (1962).

    PubMed  CAS  Google Scholar 

  17. R. H. Michell and J. N. Hawthorne, The site of diphosphoinositide synthesis in rat liver, Biochem. Biophys. Res. Commun. 21:333–338 (1965).

    Article  PubMed  CAS  Google Scholar 

  18. M. Colodzin and E. P. Kennedy, Biosynthesis of diphosphoinositide in brain, J. Biol. Chem. 240:3771–3780 (1965).

    PubMed  CAS  Google Scholar 

  19. M. Kai, G. L. White, and J. N. Hawthorne, The phosphatidylinositol kinase of rat brain, Biochem. J. 101:328–337 (1966).

    PubMed  CAS  Google Scholar 

  20. J. L. Harwood and J. N. Hawthorne, Metabolism of phosphoinositides in guinea-pig brain synaptosomes, J. Neurochem. 16:1377–1387 (1969).

    Article  PubMed  CAS  Google Scholar 

  21. U. B. Seiffert and B. W. Agranoff, Isolation and separation of inositol phosphates from hydrolysates of rat tissues, Biochim. Biophys. Acta 98:574–581 (1965).

    Article  PubMed  CAS  Google Scholar 

  22. M. Kai, J. G. Salway, and J. N. Hawthorne, The diphosphoinositide kinase of rat brain, Biochem. J. 106:791–801 (1968).

    PubMed  CAS  Google Scholar 

  23. L. E. Hokin and M. R. Hokin, The incorporation of 32P from [γ-32P]-adenosine triphosphate into polyphosphoinositides and phosphatidic acid in erythrocyte membranes, Biochim. Biophys. Acta 84:563–575 (1964).

    PubMed  CAS  Google Scholar 

  24. A. Sheltawy and R. M. C. Dawson, The polyphosphoinositides and other lipids of peripheral nerves, Biochem. J. 100:12–18 (1966).

    PubMed  CAS  Google Scholar 

  25. J. Eichberg and R. M. C. Dawson, Polyphosphoinositides in myelin, Biochem. J. 96:644–650 (1965).

    PubMed  CAS  Google Scholar 

  26. R. M. C. Dawson, in Cyclitols and Phosphoinositides (H. Kindl, ed.), pp. 57–67, Pergamon Press, Oxford (1966).

    Google Scholar 

  27. M. Kai and J. N. Hawthorne, Incorporation of injected [32P]-phosphate into the phosphoinositides of subcellular fractions from young rat brain, Biochem. J. 98:62–67 (1966).

    PubMed  CAS  Google Scholar 

  28. J. G. Salway, M. Kai, and J. N. Hawthorne, Triphosphoinositide Phosphomonoesterase activity in nerve cell bodies, neuroglia and subcellular fractions from whole rat brain, J. Neurochem. 14:1013–1024 (1967).

    Article  PubMed  CAS  Google Scholar 

  29. J. G. Salway, J. L. Harwood, M. Kai, G. L. White, and J. N. Hawthorne, Enzymes of phosphoinositide metabolism during rat brain development, J. Neurochem. 15:221–226 (1968).

    Article  PubMed  CAS  Google Scholar 

  30. M. A. Wells and J. C. Dittmer, A comprehensive study of the postnatal changes in the concentration of the lipids in developing rat brain, Biochemistry 6:3169–3174 (1967).

    Article  PubMed  CAS  Google Scholar 

  31. P. Kemp, G. Hübscher, and J. N. Hawthorne, Enzymic hydrolysis of inositol-containing phospholipids, Biochem. J. 79:193–200 (1961).

    PubMed  CAS  Google Scholar 

  32. R. S. Atherton, P. Kemp, and J. N. Hawthorne, Phosphoinositide inositolphospho-hydrolase in guinea-pig intestinal mucosa, Biochim. Biophys. Acta 125:409–412 (1966).

    Article  CAS  Google Scholar 

  33. W. Thompson, The hydrolysis of monophosphoinositide by extracts of brain, Can. J. Biochem. 45:853–861 (1967).

    Article  PubMed  CAS  Google Scholar 

  34. R. O. Friedel, J. D. Brown, and J. Durell, Monophosphatidylinositol inositol-phosphohydrolase in guinea-pig brain, Biochim. Biophys. Acta 144: 684–686 (1967).

    Article  PubMed  CAS  Google Scholar 

  35. W. Thompson and R. M. C. Dawson, The hydrolysis of triphosphoinositide by extracts of ox brain, Biochem. J. 91:233–236 (1964).

    PubMed  CAS  Google Scholar 

  36. W. Thompson and R. M. C. Dawson, The triphosphoinositide phosphodiesterase of brain tissue, Biochem. J. 91:237–243 (1964).

    PubMed  CAS  Google Scholar 

  37. R. M. C. Dawson and W. Thompson, The triphosphoinositide Phosphomonoesterase of brain tissue, Biochem. J. 91:244–250 (1964).

    PubMed  CAS  Google Scholar 

  38. G. Hauser, J. Eichberg, S. M. Gompertz, and M. Ross, Studies on Triphosphoinositide Phosphohydrolases of Rat Brain, Abstracts of the First International Meeting of the International Society for Neurochemistry, Strasbourg, France (July 1967).

    Google Scholar 

  39. M. Chang and C. E. Ballou, Specificity of ox brain triphosphoinositide Phosphomonoesterase, Biochem. Biophys. Res. Commun. 26:199–205 (1967).

    Article  PubMed  CAS  Google Scholar 

  40. C. Prottey, J. G. Salway, and J. N. Hawthorne, The structures of enzymically produced diphosphoinositide and triphosphoinositide, Biochim. Biophys. Acta 164: 238–251 (1968).

    Article  PubMed  CAS  Google Scholar 

  41. R. M. C. Dawson, Enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. notatum and ox pancreas, Biochim. Biophys. Acta 33:68–77 (1959).

    Article  PubMed  CAS  Google Scholar 

  42. L. E. Hokin and M. R. Hokin, Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide, J. Biol. Chem. 233:818–821 (1958).

    PubMed  CAS  Google Scholar 

  43. J. N. Hawthorne, The inositol phospholipids, J. Lipid Res. 1:255–280 (1960).

    PubMed  CAS  Google Scholar 

  44. L. E. Hokin and M. R. Hokin, The Mechanism of phosphate exchange in phosphatidc acid in response to acetylcholine, J. Biol. Chem. 234:1387–1390 (1959).

    PubMed  CAS  Google Scholar 

  45. J. Durell and M. A. Sodd, Studies on the acetylcholine-stimulated incorporation of radioactive inorganic orthophosphate into the phospholipid of brain particulate preparations, J. Neurochem. 13:487–491 (1966).

    Article  PubMed  CAS  Google Scholar 

  46. C. M. Redman and L. E. Hokin, Stimulation of the metabolism of phosphatidylino-sitol and phosphatidic acid in brain cytoplasmic fractions by low concentrations of cholinergic agents, J. Neurochem. 11:155–163 (1964).

    Article  PubMed  CAS  Google Scholar 

  47. M. R. Hokin and L. E. Hokin, in Metabolism and Physiological Significance of Lipids (R. M. C. Dawson and D. N. Rhodes, eds.), pp. 423–434, Wiley, New York (1964).

    Google Scholar 

  48. L. E. Hokin, Autoradiographic localization of the acetylcholine-stimulated synthesis of phosphatidylinositol in the superior cervical ganglion, Proc. Natl. Acad. Sci., U.S. 53:1369–1376 (1965).

    Article  CAS  Google Scholar 

  49. F. B. Palmer and R. J. Rossiter, A simple procedure for the study of inositol phosphatides in cat brain slices, Can. J. Biochem. 43:671–683 (1965).

    Article  PubMed  CAS  Google Scholar 

  50. L. E. Hokin, Effects of acetylcholine on the incorporation of 32P into various phospholipids in slices of normal and denervated superior cervical ganglia of the cat, J. Neurochem. 13: 179–184 (1966).

    Article  PubMed  CAS  Google Scholar 

  51. M. Kai, J. G. Salway, R. H. Michell, and J. N. Hawthorne, The biosynthesis of triphosphoinositide by rat brain in vitro, Biochem. Biophys. Res. Commun. 22:370–375 (1966).

    Article  CAS  Google Scholar 

  52. G. B. Ansell, The action of drugs on phospholipid metabolism, Advan. Lipid Res. 3:139–170 (1965).

    CAS  Google Scholar 

  53. G. B. Ansell and J. N. Hawthorne, Phospholipids, p. 356, Elsevier, Amsterdam (1964).

    Google Scholar 

  54. G. B. Ansell and H. Dohmen, The metabolism of individual phospholipids in the rat brain during hypoglycemia, anaesthesia and convulsions, J. Neurochem. 2:1–10 (1957).

    Article  PubMed  CAS  Google Scholar 

  55. S. J. Mule, Effect of morphine and nalorphine on the metabolism of phospholipid in guinea pig cerebral cortex slices, J. Pharmacol. Exptl. Therap. 154:370–383 (1966).

    CAS  Google Scholar 

  56. M. G. Larrabee, J. D. Klingman, and W. S. Leicht, Effects of temperature, calcium and activity on phospholipid metabolism in a sympathetic ganglion, J. Neurochem. 10:549–570(1963).

    Article  PubMed  CAS  Google Scholar 

  57. M. G. Larrabee and W. S. Leicht, Metabolism of phosphatidylinositol and other lipids in active neurones of sympathetic ganglia and other peripheral nervous tissues: the site of the inositide effect, J. Neurochem. 12:1–13 (1965).

    Article  PubMed  CAS  Google Scholar 

  58. K. Hayashi, T. Kanoch, S. Schimizer, M. Kai, and S. Yamazoe, The effect of electrically induced convulsions on the incorporation of 32P into rabbit brain phospholipids, J. Biochem., Tokyo 51:72–77 (1962).

    CAS  Google Scholar 

  59. R. M. C. Dawson and J. Eichberg, Diphosphoinositide and triphosphoinositide in animal tissues: extraction, estimation and changes post-mortem, Biochem. J. 96: 634–643 (1965).

    PubMed  CAS  Google Scholar 

  60. K. Hayashi, Y. Yagihara, I. Nakamura and S. Yamazoe, Post-mortem breakdown of phosphoinositides and phosphatidic acid and 32P incorporation into phospholipids in various states of brain tissue, J. Biochem., Tokyo 60:42–51 (1966).

    CAS  Google Scholar 

  61. J. M. Glynn, C. W. Hayman, J. Eichberg, and R. M. C. Dawson, The ATPase system responsible for cation transport in electric organ: exclusion of phospholipids as intermediates, Biochem. J. 94:692–699 (1965).

    PubMed  CAS  Google Scholar 

  62. K. Hayashi, Y. Yagihara, I. Nakamura, A. Katagiri, Y. Arakawa, and S. Yamazoe, Incorporation of 32P from [γ-32P]-ATP into polyphosphoinositides and phosphatidic acid in subcellular particles of guinea pig brain, J. Biochem. Tokyo 62:15–20 (1967).

    PubMed  CAS  Google Scholar 

  63. J. C. Standefer and F. E. Samson, Phosphoinositides related to the (Na+, K+) activated ATPase in rat brain, Federation Proc. 26:765 (1967).

    Google Scholar 

  64. L. Amaducci, A. Pazzagli, and G. Pessina, The relation of proteolipids and phospha-tidopeptides to tissue elements in the bovine nervous system, J. Neurochem. 9:509–518 (1962).

    Article  PubMed  CAS  Google Scholar 

  65. R. M. C. Dawson, “Phosphatido-peptide”-like complexes formed by the interaction of calcium triphosphoinositide with protein, Biochem. J. 97:134–138 (1965).

    Google Scholar 

  66. A. L. Hodgkin and R. D. Keynes, Movements of labelled calcium in squid giant axons, J. Physiol. 138:253–281 (1957).

    PubMed  CAS  Google Scholar 

  67. R. J. Rossiter and F. B. Palmer, Incorporation of 3H-myoinositol into the phosphoinositides of cat brain in vivo, Biochem. Z. 342:337–344 (1965).

    PubMed  CAS  Google Scholar 

  68. Y. Yagihara, J. G. Salway, and J. N. Hawthorne, Incorporation of 32P in vitro into triphosphoinositide and related lipids of rat superior cervical ganglia and vagus nerves, J. Neurochem. 16:1133–1139 (1969).

    Article  PubMed  CAS  Google Scholar 

  69. S. G. Eliasson, J. D. Scarpellini, and R. R. Fox, Inositide metabolism in rabbit hereditary ataxia, A.M.A. Arch. Neurol. 17:661–665 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Hawthorne, J.N., Kai, M. (1970). Metabolism of Phosphoinositides. In: Lajtha, A. (eds) Metabolic Reactions in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7160-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7160-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7162-9

  • Online ISBN: 978-1-4615-7160-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics