Skip to main content

Abstract

Nucleic acids in the central nervous system, as in other organs, are characterized by their size, composition, and role in protein synthesis. However, the regional tissue heterogeneity in the brain and the diversity of the cell types and their processes(1) complicate both the acquisition and interpretation of experimental data. Despite these difficulties, recent reports suggest that, in addition to the established role of nucleic acids in the biosynthesis of proteins,(2) RNA and protein synthesis may be involved in the accrual of sensory information in the brain, thus indicating a possible approach to elucidation of brain function on a molecular basis.(3)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Friede, in Topographic Brain Chemistry, pp. 2–7, Academic Press, New York (1966).

    Google Scholar 

  2. P. N. Campbell,in Progress in Biophysics and Molecular Biology (J. A. V. Butler and H. E. Huxley, eds.), Vol. 15, pp. 1–36, Pergamon Press, New York (1965).

    Google Scholar 

  3. H. Hyden, in Brain Function (M. A. B. Brazier, ed.), Vol. II, pp. 29–68, University of California Press, Berkeley and Los Angeles (1964).

    Google Scholar 

  4. D. R. Dahl, R. Jacobs, and F. E. Samson, Jr., Characterization of two mitochondrial particulates from rat brain, Am. J. Physiol. 198: 467–70 (1960).

    PubMed  CAS  Google Scholar 

  5. H. G. DuBuy, C. F. T. Mattem, and L. Riley, Comparisons of the DNA’s obtained from brain nuclei and mitochondria of mice and from the nuclei and kinetoplasts of Leishmamia enrietti, Biochim. Biophys. Acta 123: 298–305 (1966).

    Article  CAS  Google Scholar 

  6. H. Busch, in Histones and Other Nuclear Proteins, pp. 91–119, Academic Press, New York (1965).

    Google Scholar 

  7. H. Busch, R. Desjardins, D. Grogan, K. Higashi, S. T. Jacob, M. Muramatsu, T. S. Ro, and W. J. Steele, in International Symposium: The Nucleolus, Its Structure and Function, Monograph 23, pp. 193–222, National Cancer Institute, Bethesda, Maryland (1966).

    Google Scholar 

  8. M. Alfert and I. I. Geschwind, A selective staining method for basic proteins of cell nuclei, Proc. Natl. Acad. Sci.(U.S.) 39: 991–999 (1953).

    Article  CAS  Google Scholar 

  9. M. L. Bernstiel, M. I. H. Chipchase, and W. G. Flamm, On the chemistry and organization on nucleolar proteins, Biochim. Biophys. Acta 87: 112 (see R. C. Huang) (1964).

    Google Scholar 

  10. H. R. Mahler, W. J. Moore, and R. J. Thompson, Isolation and characterization of RNA from cerebral cortex of rat, J. Biol. Chem. 241: 1283–1289 (1966).

    PubMed  CAS  Google Scholar 

  11. R. W. Holley, G. A. Everett, J. T. Madison, and A. Zamir, Nucleotide sequences in the yeast alanine transfer RNA, J. Biol. Chem. 240: 2122–2128 (1965).

    PubMed  CAS  Google Scholar 

  12. G. L. Brown,in Progress in Nucleic Acid Research (J. N. Davidson and W. E. Cohn, eds.), Vol. 2, pp. 260–305, Academic Press, New York (1963).

    Google Scholar 

  13. E. Borek and P. R. Srinivasan, The methylation of nucleic acids, Ann. Rev. Biochem. 35: 275298 (1966).

    Google Scholar 

  14. L. N. Simon, A. J. Glasky, and T. H. Rejal, Enzymes in the CNS. I. RNA methylase, Biochim. Biophys. Acta 142: 99–104 (1967).

    Article  CAS  Google Scholar 

  15. R. K. Datta, Brain ribosomes, Brain Res. 2: 301–322 (1966).

    Article  PubMed  CAS  Google Scholar 

  16. C. E. Zomzely, S. Roberts, D. M. Brown, and C. Provost, Cerebral protein synthesis. I. Physical properties of cerebral ribosomes and polysomes, J. Mol. Biol. 20: 455–468 (1966).

    Google Scholar 

  17. M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. VI. Preparation and properties of ribosomes, Biochim. Biophys. Acta 95: 132–145 (1965).

    Article  CAS  Google Scholar 

  18. S. Yamagami, M. Masui, and Y. Kawakita, Preparation and properties of ribosomes from guinea pig brains, J. Neurochem. 10: 849–850 (1963).

    Article  PubMed  CAS  Google Scholar 

  19. R. P. Perry,in Progress in Nucleic Acid Research and Molecular Biology (J. N. Davidson and W. E. Cohn, eds.), Vol. 6, pp. 220–253, Academic Press, New York (1967).

    Google Scholar 

  20. H. R. Mahler and A. T. Campagnoni, Isolation and properties of polyribosomes from cerebral cortex, Biochemistry 6: 956–967 (1967).

    Article  PubMed  Google Scholar 

  21. A. Rich, J. R. Warner, and H. M. Goodman, in Synthesis and Structure of Macromolecules, Cold Spring Harbor Symp. Quant. Biol. XXVIII:269–286 (1963).

    Google Scholar 

  22. S. L. Palay and G.E. Palade, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1: 69–88 (1955).

    Article  PubMed  CAS  Google Scholar 

  23. G. E. Palade and P. Siekevitz, Liver microsomes, an integrated morphological and biochemical study, J. Biophys. Biochem. Cytol. 2: 171–200 (1956).

    Article  PubMed  CAS  Google Scholar 

  24. F. Lipmann,in Progress in Nucleic Acid Research (J. N. Davidson and W. E. Cohn, eds.), Vol. 1, pp. 135–158, Academic Press, New York (1963).

    Google Scholar 

  25. S. Yamagami, R. R. Fritz, and D. A. Rappoport, Biochemistry of the developing rat brain. VII. Changes in the ribosomal system and nuclear RNAs, Biochim. Biophys. Acta 129: 532547 (1966).

    Google Scholar 

  26. G. P. Georgiev,in Progress in Nucleic Acid Research and Molecular Biology (J. N. Davidson and W. E. Cohn, eds.), Vol. 6, pp. 259–351, Academic Press, New York (1967).

    Google Scholar 

  27. S. Spiegelman, in Recent Progress in Microbiology, Symp., 8th Intern. Congr. Microbiol., 1962, Montreal, Canada, pp. 95–115 (1963).

    Google Scholar 

  28. S. Granick and A. Gibor,in Progress in Nucleic Acid Research and Molecular Biology (J. N. Davidson and W. E. Dohn, eds.), Vol. 6, pp. 143–183, Academic Press, New York (1967).

    Google Scholar 

  29. D. M. Prescott,in Progress in Nucleic Acid Research and Molecular Biology (J. N. Davidson and W. E. Cohn, eds.), Vol. 3, pp. 33–54, Academic Press, New York (1964).

    Google Scholar 

  30. R. M. S. Smellie,in Progress in Nucleic Acid Research (J. N. Davidson and W. E. Cohn, eds.), Vol. 1, pp. 27–55, Academic Press, New York (1963).

    Google Scholar 

  31. M. P. Viola, Histochemical differences between glia nuclei of the rat spinal cord, Sperimentale 113: 317–333 (1963).

    PubMed  CAS  Google Scholar 

  32. I. H. Heller and K. A. C. Elliott, Deoxyribonucleic acid content and cell density in brain and human brain tumors, Can. J. Biochem. Physiol. 32: 584–592 (1954).

    Article  PubMed  CAS  Google Scholar 

  33. J. M. Kissane and E. Robins, The fluorometric measurement of DNA in animal tissues with special reference to the CNS, J. Biol. Chem. 233: 184–188 (1958).

    PubMed  CAS  Google Scholar 

  34. P. Mandel, R. Bieth, and E. Stoll, Biochemical evolution of the brain of a chicken embryo. The nucleic acids, Compt. Rend. Soc. Biol. 142: 1020–1022 (1948).

    Google Scholar 

  35. P. Mandel, H. Rein, S. Harth-Edel, and R. Mardell, in Comparative Neurochemistry ( D. Richter, ed.), pp. 149–163, Pergamon Press, New York (1964).

    Google Scholar 

  36. M. J. D. White, in The Chromosomes (K. Mellanby, ed.), pp. 14–15, 40–42, John Wiley & Sons, New York (1963).

    Google Scholar 

  37. N. Robinson, Composition of deoxyribonucleoprotein in human brain, Clin. Chim. Acta 14: 429–434 (1966).

    Article  CAS  Google Scholar 

  38. E. Chargaff, S. Zamenhof, and L. B. Shettles, Human deoxypentose nucleic acid, Nature 165: 756–757 (1950).

    Article  CAS  Google Scholar 

  39. N. I. Gold and S. H. Sturgis, Cytosine-thymidine ratios of endometrial DNA’s, J. Biol. Chem. 196: 143–150 (1952).

    PubMed  CAS  Google Scholar 

  40. C. F. Emanuel and I. L. Chaikoff, Deoxyribonucleic acid of the CNS, kidney, and spleen: A comparison of some chemical and physical properties, J. Neurochem. 5: 236–244 (1960).

    Article  PubMed  CAS  Google Scholar 

  41. J.-E. Edstrom, The content and the concentration of RNA in motor anterior horn cells from the rabbit, J. Neurochem. 1: 159–165 (1956).

    Article  PubMed  CAS  Google Scholar 

  42. J.-E. Edstrom and A. Pigon, Relation between surface, RNA content, and nuclear volume in encapsulated spinal ganglion cells, J. Neurochem. 3: 95–99 (1958).

    Article  PubMed  CAS  Google Scholar 

  43. H. Hyden,in Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), pp. 331–375, Chas. C. Thomas, Springfield, Illinois, 2nd edition (1962).

    Google Scholar 

  44. A. Yajima, The nucleic acid content of the brain tissue of rats as influenced by age, Tohoku J. Exptl. Med. 85: 252–255 (1965).

    Article  CAS  Google Scholar 

  45. M. Jacob, J. Stevenin, R. Jund, C. Judes, and P. Mandel, Rapidly-labelled RNA in brain, J. Neurochem. 13: 619–628 (1966).

    Article  PubMed  CAS  Google Scholar 

  46. G. P. Georgiev, O. P. Samarina, M. I. Lerman, M. N. Smirnov, and A. N. Severtzov, Biosynthesis of messenger and ribosomal RNA’s in the nucleolochromosomal apparatus of animal cells, Nature 200: 1291–1294 (1963).

    Article  PubMed  CAS  Google Scholar 

  47. E. Egyhazi and H. Hyden, RNA with high specific activity in neurons and glia, Brain Res. 2: 197–200 (1966).

    Article  PubMed  CAS  Google Scholar 

  48. E. Egyhazi and H. Hyden, Biosynthesis of rapidly labelled RNA in brain cells, Life Sci. 5: 1215–1223 (1966).

    Article  PubMed  CAS  Google Scholar 

  49. P. Mandel and R. Bieth, Comparative study of the biochemical development of the brain in various mammals, Compt. Rend. Acad. Sci. 235: 485–487 (1952).

    CAS  Google Scholar 

  50. M. Jacob and P. Mandel, in Protides of the Biological Fluids (H. Peeters, ed.), Vol. 13, pp. 63–80, Elsevier Publishing Company, Amsterdam (1966).

    Google Scholar 

  51. R. Landolt, H. H. Hess, and C. Thalhemier, Regional distribution of some chemical structural components of the human nervous system, J. Neurochem. 13: 1441–1452 (1966).

    Article  PubMed  CAS  Google Scholar 

  52. E. Robins, D. E. Smith, and K. M. Eydt, The quantitative histochemistry of the cerebral cortex. I. Architectonic distribution of ten chemical constituents in the motor and the visual cortices, J. Neurochem. 1: 54–67 (1956).

    Article  PubMed  CAS  Google Scholar 

  53. L. May and R. G. Grenell, Nucleic acid content of various areas of the rat brain, Proc. Soc. Exptl. Biol. Med. 102: 235–239 (1959).

    CAS  Google Scholar 

  54. M. Winick and A. Noble, Quantitative changes in DNA, RNA, and protein during prenatal and postnatal growth in the rat, Develop. Biol. 12: 451–466 (1965).

    CAS  Google Scholar 

  55. I. Leslie and J. N. Davidson, The chemical composition of the chick embryonic cell, Biochim. Biophys. Acta 7: 413–428 (1951).

    Article  CAS  Google Scholar 

  56. V. I. Krasil’nekova, Cytochemical study of nucleic acids in rabbit brain cells in ontogenesis, Tsitologiya 2(1):29–36 (1960); Ref. Zh. Biol. 1961, No. 2A253 (Transl.).

    Google Scholar 

  57. K. G. Manukyan, Nucleic acids and phospholipids of the rabbit brain in ontogenesis, Dokl. Akad. Nauk SSSR 101: 1085–1088 (1955).

    CAS  Google Scholar 

  58. K. G. Manukyan, Exchange of phosphorus of nucleic acids and phospholipids in the brain of rabbit during ontogenesis, Dokl. Akad. Nauk SSSR 102: 567–570 (1955).

    CAS  Google Scholar 

  59. E. B. Skvirskaya and T. B. Silich, Nucleic acids in the various parts of the brain, Dokl. Akad. Nauk SSSR 93: 1073–1075 (1953).

    CAS  Google Scholar 

  60. E. B. Skvirskaya and O. P. Chepinogu, Metabolism of nucleic acids in tissue of brain and liver in ontogenesis, Dokl. Akad. Nauk SSSR 92: 1007–1010 (1953).

    CAS  Google Scholar 

  61. W. Keup, in Progress in Neurobiology, Vol. II, Ultrastructure and Cellular Chemistry of Neural Tissue ( H. Waelsch, ed.), pp. 215–223, Hoeber-Harper Book, New York (1957).

    Google Scholar 

  62. D. H. Adams, The relationship between cellular nucleic acids in the developing rat cerebral cortex, Biochem. J. 98: 636–640 (1966).

    PubMed  CAS  Google Scholar 

  63. J. Bernsohn and H. Norgello, Base composition of ribosomal RNA in newborn and adult rat brain, Proc. Soc. Exptl. Biol. Med. 122: 22–24 (1966).

    CAS  Google Scholar 

  64. W. Albrecht, Changes in the content of the different phosphate fractions in the brain and muscles of the mouse during growth, Z. Naturforsch. 116: 248–252 (1956).

    Google Scholar 

  65. D. R. Dahl and F. E. Samson, Jr., Metabolism of rat brain mitochondria during postnatal development, Am. J. Physiol. 196: 470–472 (1959).

    PubMed  CAS  Google Scholar 

  66. S. S. Oja, Postnatal changes in the concentration of nucleic acids, nucleotides, and amino acids in the rat brain, Ann. Acad. Sci. Fennicae Ser. A. V. Med. 125: 1–69 (1966).

    CAS  Google Scholar 

  67. L. L. Uzman and M. K. Rumley, Changes in the composition of the developing mouse brain during early myelination, J. Neurochem. 3: 179–184 (1958).

    Article  Google Scholar 

  68. J. B. Flexner and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis. XIV. The nucleic acids of the developing cerebral cortex and liver of the fetal guinea pig, J. Cellular Comp. Physiol. 37: 1–16 (1951).

    Article  Google Scholar 

  69. J. Szepsenwol, J. Mason, and M. E. Shontz, Phospholipids and nucleic acids in embryonic tissues of the chick, Am. J. Physiol. 180: 525–529 (1955).

    PubMed  CAS  Google Scholar 

  70. C. W. Dingman and M. B. Sporn, Studies on chromatin. I. Isolation and characterization of nuclear complexes of DNA, RNA, and protein from embryonic and adult tissues of the chicken, J. Biol. Chem. 239: 3483–3492 (1964).

    CAS  Google Scholar 

  71. D. I. Kurtz and F. M. Sinex, Age related differences in the association of brain DNA and nuclear protein, Biochim. Biophys. Acta 145: 840–842 (1967).

    Article  CAS  Google Scholar 

  72. G. Schmidt and S. J. Thannhauser, A method for the determination of DNA, RNA, and phosphoproteins in animal tissues, J. Biol. Chem. 161: 83–89 (1945).

    PubMed  CAS  Google Scholar 

  73. W. C. Schneider, Phosphorous compounds in animal tissues. I. Extraction and estimation of DNA and of RNA, J. Biol. Chem. 161: 293–303 (1945).

    CAS  Google Scholar 

  74. M. Ogur and G. Rosen, The nucleic acid of plant tissues. I. The extraction and estimation of DNA and RNA, Arch. Biochem. 25: 262–276 (1950).

    CAS  Google Scholar 

  75. J. E. Logan, W. A. Mannell, and R. J. Rossiter, Estimation of nucleic acids in tissue from the nervous system, Biochem. J. 51: 470–480 (1952).

    PubMed  CAS  Google Scholar 

  76. H. N. Munro and A. Fleck,in Methods of Biochemical Analysis (David Glick, ed.), Vol. XIV, pp. 113–176, Interscience Publishers, New York (1966).

    Google Scholar 

  77. G. R. Barker and J. A. Hollinshead, Nucleotide metabolism in germinating seeds, Biochem. J. 93: 78–83 (1964).

    PubMed  CAS  Google Scholar 

  78. S. Shibko, P. Korvistoinen, C. A. Tratnyek, A. R. Newhall, and L. Friedman, A method for sequential quantitative separation and determination of protein, RNA, DNA, lipid, and glycogen from a single rat liver homogenate or from a subcellular fraction, Anal. Biochem. 19: 514–528 (1967).

    CAS  Google Scholar 

  79. O. Lindberg and L. Ernster, in Methods of Biochemical Analysis (David Glick, ed.), Vol. III, pp. 1–17, Interscience Publishers, New York (1956).

    Google Scholar 

  80. B. Singer and H. Fraenkel-Conrat, Effects of bentonite on infectivity and stability of TMV-RNA, Virology 14: 59–65 (1961).

    Article  CAS  Google Scholar 

  81. T. J. Brownhill, A. S. Jones, and M. Stacey, The inactivation of ribonuclease during the isolation of ribonucleic acids and ribonucleoproteins from yeast, Biochem. J. 73: 434–438 (1959).

    PubMed  CAS  Google Scholar 

  82. K. Shortman, Studies on cellular inhibitors of ribonuclease. I. The assay of the ribonuclease-inhibitor system, and the purification of the inhibitor from rat liver, Biochim. Biophys. Acta 51: 37–49 (1961).

    Article  CAS  Google Scholar 

  83. Y. Takahashi, K. Mase, and H. Sugano, Preparation of polysomes from rat brain tissue, Biochim. Biophys. Acta 119: 627–629 (1966).

    Article  CAS  Google Scholar 

  84. K. S. Kirby, A new method for the isolation of RNA’s from mammalian tissues, Biochem. J. 64: 405–408 (1965).

    Google Scholar 

  85. G. P. Georgiev, V. L. Mant’eva, and I. B. Zbarskii, RNA fractions in cell nuclei isolated by phenol and by sucrose-glycerophosphate, Biochim. Biophys. Acta 37: 373–374 (1960).

    Article  CAS  Google Scholar 

  86. A. Sibatani, K. Yamana, K. Kimura, and H. Okagaki, Fractionation with phenol of RNA of animal cells, Biochim. Biophys. Acta 33: 590–591 (1959).

    Article  CAS  Google Scholar 

  87. K. Yamana and A. Sibatani, Fractionation of RNA’s with phenol, Biochim. Biophys. Acta 41: 295–303 (1960).

    Article  CAS  Google Scholar 

  88. A. C. Peacock and C. W. Dingman, Resolution of multiple RNA species by polyacrylamide gel electrophoresis, Biochemistry 6: 1818–1827 (1967).

    Article  PubMed  CAS  Google Scholar 

  89. I. Pechan, Nucleic acids of the brain. I. Isolation of DNA from the pig brain and its arrangement with preparations from other tissues, Biologia 16: 292–295 (1961).

    CAS  Google Scholar 

  90. A. Yajima, The decrepitude of the rat brain with special references to changes in nucleic acids,Tohoku J. Exptl. Med. 89: 235–244 (1966).

    Article  CAS  Google Scholar 

  91. I. Leslie, in The Nucleic Acids, Vol. II, pp. 1–44, Academic Press, New York (1955).

    Google Scholar 

  92. D. Bodian and D. Dziewiatkowski, The disposition of radio-active phosphorus in normal, as compared with regenerating and degenerating nervous tissue, J. Cellular Comp. Physiol. 35: 155–177 (1950).

    Article  CAS  Google Scholar 

  93. R. Bieth and P. Mandel, A comparative study of adult brain constituents in various classes of vertebrates, Experientia 9: 185–186 (1953).

    Article  PubMed  CAS  Google Scholar 

  94. W. C. Schneider, Phosphorus compounds in animal tissues. III. A comparison of methods for the estimation of nucleic acids, J. Biol. Chem. 164: 747–751 (1946).

    PubMed  CAS  Google Scholar 

  95. W. C. Schneider and H. L. Klug, Phosphorus compounds in animal tissues. IV. The distribution of nucleic acids and other phosphorus containing compounds in normal and malignant tissues, Cancer Res. 6: 691–694 (1946).

    PubMed  CAS  Google Scholar 

  96. C. H. Ti, C. K. Wang, and Y. Chen, The nucleic acid contents of animal brains as determined by two wavelength spectrophotometry, Sheng Wu Li Hsuek Pao 4: 551–557 (1964).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Rappoport, D.A., Fritz, R.R., Myers, J.L. (1969). Nucleic Acids. In: Lajtha, A. (eds) Chemical Architecture of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7154-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7154-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7156-8

  • Online ISBN: 978-1-4615-7154-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics