Skip to main content

Carbohydrates

  • Chapter
  • 97 Accesses

Abstract

Of possible sources of metabolic support for brain function in vivo,only glucose has been shown to be capable of maintaining cerebral tissues satisfactorily. Other sugars, e.g., mannose and maltose, have been found capable of supporting brain function in hepatectomized animals(1,2) but were considered to be converted to glucose elsewhere in the body before reaching the brain. Fructose will not support normal cerebral function in hepatectomized animals(1) and is utilized only very slowly by the brain in perfused preparations.(3) The brain relies on a rapid utilization of the glucose brought to it from the bloodstream and is particularly dependent on the circulating blood glucose, as it has a relatively small reserve of glycogen (less than that of muscle tissues).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Maddock, J. E. Hawkins, and E. Holmes, The inadequacy of substances of the “glucose cycle” for maintenance of normal cortical potentials during hypoglucemia produced by hepatectomy with abdominal evisceration, Am. J. Physiol. 125: 551–565 (1939).

    CAS  Google Scholar 

  2. F. C. Mann and T. B. Magath, The effect of administration of glucose in the condition following total extirpation of the liver, Arch. Internal Med. 30: 171–181 (1922).

    Article  CAS  Google Scholar 

  3. A. Geiger, J. Magnes, R. M. Taylor, and M. Veralli, Effect of blood constituents on uptake of glucose and on metabolic rates of the brain in perfusion experiments, Am. J. Physiol. 177: 138–149 (1954).

    PubMed  CAS  Google Scholar 

  4. W. Thorn, H. Scholl, G. Pfleiderer, and B. Mueldener, Metabolic processes in the brain at normal and reduced temperatures and under anoxic and ischaemic conditions, J. Neurochem. 2: 150–165 (1958).

    Article  PubMed  CAS  Google Scholar 

  5. S. E. Kerr, Studies on the phosphorus compounds of the brain. I. Phosphocreatine, J. Biol. Chem. 110: 625–635 (1935).

    CAS  Google Scholar 

  6. D. Richter and R. M. C. Dawson, Brain metabolism in emotional excitement and in sleep, Am. J. Physiol. 154: 73–79 (1948).

    PubMed  CAS  Google Scholar 

  7. A. Chester and H. E. Himwich, The glycogen content of various parts of the central nervous system of dogs and cats at different ages, Arch. Biochem. 2: 175–181 (1943).

    Google Scholar 

  8. M. R. A. Chance and D. C. Yaxley, Central nervous function and changes in brain metabolite concentration. I. Glycogen and lactate in convulsing mice, J. Exptl. Biol. 27: 311–323 (1950).

    CAS  Google Scholar 

  9. K. F. Gey, The concentration of glucose in rat tissues, Biochem. J. 64: 145–150 (1956).

    PubMed  CAS  Google Scholar 

  10. C. M. Damron, M. M. Monier, and J. H. Roe, Metabolism of L-ascorbic acid, dehydro-Lascorbic acid and diketo-L-gulonic acid in the guinea pig, J. Biol. Chem. 195: 599–606 (1952).

    PubMed  CAS  Google Scholar 

  11. S. Lin and H. P. Cohen, The effect of scorbutus and pentobarbital on the in vivo levels of “energy-rich” phosphates and their turnover in guinea pig cerebral tissue, Arch. Biochem. Biophys. 88: 256–261 (1960).

    Article  PubMed  CAS  Google Scholar 

  12. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239: 18–30 (1964).

    Google Scholar 

  13. J. K. Tews, S. H. Carter, and W. E. Stone, Chemical changes in the brain during insulin hypoglycaemia and recovery, J. Neurochem. 12: 679–693 (1965).

    Article  PubMed  CAS  Google Scholar 

  14. N. B. Everett, B. Simmons, and E. P. Lasher, Distribution of blood (Fe59) and plasma (I’ 31) volumes of rats determined by liquid nitrogen freezing, Circulation Res. 4: 419–424 (1956).

    Article  PubMed  CAS  Google Scholar 

  15. H. L. Rosomoff, Method for simultaneous quantitative estimation of intracranial contents, J. Appl. Physiol. 16: 395–396 (1961).

    PubMed  CAS  Google Scholar 

  16. R. S. Bourke, E. S. Greenberg, and D. B. Tower, Variation of cerebral cortex fluid spaces in vivo as a function of species brain size, Am. J. Physiol. 208: 682–692 (1965).

    PubMed  CAS  Google Scholar 

  17. I. Gibson and H. Mcllwain, Continuous recording of changes in membrane potential in mammalian cerebral tissues in vitro; recovery after depolarization by added substances, J. Physiol. 176: 261–283 (1965).

    PubMed  CAS  Google Scholar 

  18. A. Van Harreveld, Water and electrolyte distribution in central nervous tissue, Federation Proc. 21: 659–664 (1962).

    Google Scholar 

  19. A. Van Harreveld, J. Crowell, and S. K. Malhotra, A study of extracellular space in central nervous tissue by freeze substitution, J. Cell. Biol. 25: 117–137 (1965).

    Article  Google Scholar 

  20. A. Van Harreveld and S. K. Malhotra, Extracellular space in the cerebral cortex of the mouse, J. Anat. 101:197–207 (1967).

    Google Scholar 

  21. R. G. Cooper and J. W. Archdeacon, Blood and cerebrospinal fluid glucose in the fasting state. Am. J. Physiol. 198: 260–262 (1960).

    PubMed  CAS  Google Scholar 

  22. H. Dayson, A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit, J. Physiol. 129: 111–133 (1955).

    Google Scholar 

  23. P. J. Randle and G. H. Smith, Regulation of glucose uptake by muscle. 2. The effects of insulin, anaerobiosis and cell poisons on the penetration of isolated rat diaphragm by sugars, Biochem. J. 70: 501–508 (1958).

    PubMed  CAS  Google Scholar 

  24. S. E. Kerr and M. Ghantus, The carbohydrate metabolism of brain. III. On the origin of lactic acid, J. Biol. Chem. 117: 217–225 (1937).

    CAS  Google Scholar 

  25. C. Bernard, Nouvelles recherches expérimentales sur les phénomes glycogéniques du foie, Comps. Rend. 44: 1325–1331 (1857).

    Google Scholar 

  26. E. Pflüger, Estimation of glycogen, Arch. Ges. Physiol. 93: 163–185 (1902).

    Article  Google Scholar 

  27. S. E. Kerr, The carbohydrate metabolism of brain. I. The determination of glycogen in nerve tissue, J. Biol. Chem. 116: 1–8 (1936).

    CAS  Google Scholar 

  28. R. L. Whistler and J. N. BeMiller, Extraction of glycogen with dimethyl sulfoxide, Arch. Biochem. Biophys. 98: 120–123 (1962).

    Article  PubMed  CAS  Google Scholar 

  29. E. Bueding and S. A. Orrell, A mild procedure for the isolation of polydispersed glycogen from animal tissues, J. Biol. Chem. 239: 4018–4020 (1964).

    PubMed  CAS  Google Scholar 

  30. S. A. Orrell and E. Bueding, A comparison of products obtained by various procedures used for the extraction of glycogen, J. Biol. Chem. 239: 4021–4026 (1964).

    PubMed  CAS  Google Scholar 

  31. E. E. Goncharova, Some data on the structure of glycogen and polysaccharides of the brain synthesized in vitro by brain enzymes, in Proc. 3rd All-Union Neurochem. Conti Erevan (A. V. Palladin and Ch. Buniatian, eds.), p. 455, Armenian C.C.P., Erevan (1962).

    Google Scholar 

  32. B. I. Khaikina and E. E. Goncharova, Metabolism and chemical structure of glycogen fractions in the brain, in Problems of the Biochemistry of the Nervous System (A. V. Palladin, ed.), pp. 87–95, Pergamon Press, Oxford (1964).

    Google Scholar 

  33. S. H. Carter and W. E. Stone, Effects of convulsants on brain glycogen in the mouse, J. Neurochem. 7: 16–19 (1961).

    Article  PubMed  CAS  Google Scholar 

  34. S. E. Kerr and M. Ghantus, The carbohydrate metabolism of brain. II. The effect of varying the carbohydrate and insulin supply on the glycogen, free sugar and lactic acid in mammalian brain, J. Biol. Chem. 116: 9–20 (1936).

    CAS  Google Scholar 

  35. A. W. Merrick, Encephalic glycogen differencesin young and adult rats, J. Physiol. 158: 476–485 (1961).

    PubMed  CAS  Google Scholar 

  36. M. A. Stewart and J. V. Passonneau, Identification of fructose in mammalian nerve, Biochem. Biophys. Res. Commun. 17: 536–541 (1964).

    Article  CAS  Google Scholar 

  37. L. F. Leloir, Enzymic isomerization and related processes, Advan. Enzymol. 14: 193–218(1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Bachelard, H.S. (1969). Carbohydrates. In: Lajtha, A. (eds) Chemical Architecture of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7154-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7154-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7156-8

  • Online ISBN: 978-1-4615-7154-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics