Skip to main content

Abstract

Gross anatomical inspection of the central nervous system (CNS) reveals that the shape taken by different parts is dependent upon accumulation of nerve cells referred to as nuclei, ganglia, or gray matter and bundles of nerve fibers referred to as tracts, funiculi, fasciculi, peduncles, commissures, or white matter. This old definition and differentiation between gray and white matter, based upon gross anatomical differences, still seems to be useful today, especially in approaching the physiological and pathological function of CNS. The gray and white matter will be discussed below in terms of cellular and chemical differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Ranson and S. L. Clark, The Anatomy of the Nervous System. Its Development and Function, Saunders, Philadelphia (1959).

    Google Scholar 

  2. K. A. C. Elliott, in The Biology of Myelin (S. R. Korey, ed.), pp. 230–236, Hoeber—Harper Book, New York (1959).

    Google Scholar 

  3. W. J. Schmidt, Doppelbrechung und Feinbau der Markscheide der Nervenfasern. Z. Zellforsch. Mikroskop. Anat. 23: 657 (1936).

    Article  Google Scholar 

  4. F. O. Schmitt, R. S. Bear, and K. J. Palmer, X-ray diffraction studies on the structure of the nerve myelin sheath, J. Cellular Comp. Physiol. 18: 31–42 (1941).

    Article  CAS  Google Scholar 

  5. H. Fernandez—Moran, Sheath and axon structures in the internode portion of vertebrate myelinated nerve fibres; electron microscope study of rat and frog sciatic nerves, Exptl. Cell Res. 1: 309–337 (1950).

    Article  Google Scholar 

  6. H. Fernandez-Moran, in Congreso Latino-Americano de Neurocirurgia VI, Montevideo (1955); Acta y Trabajos, p. 599, Montevideo, Imprenta Rasqual H. Rosillo (1855).

    Google Scholar 

  7. B. B. Geren and J. Raskind, Development of the fine structure of the myelin sheath in sciatic nerves of chick embryos, Proc. Natl. Acad. Sci. 39: 880–884 (1953).

    Article  PubMed  CAS  Google Scholar 

  8. F. S. Sjöstrand, Lamellated structure of the nerve myelin sheath as revealed by high resolution electron microscopy, Experientia 9: 68 (1953).

    Article  PubMed  Google Scholar 

  9. S. A. Luse, Formation of myelin in the central nervous system of mice and rats as studied with the electron microscope, J. Biophys. Biochem. Cytol. 2: 777–784 (1956).

    Article  PubMed  CAS  Google Scholar 

  10. B. B. Geren, Formation from the Schwann cell of myelin in the peripheral nerves of chick embryos, Exptl. Cell Res. 7: 558–562 (1954).

    Article  Google Scholar 

  11. E. DeRobertis, Morphogenesis of the retinal rods: An electron microscope study, J. Biophys. Biochem. Cytol. 2, Suppl. 209 (1956).

    Google Scholar 

  12. S. A. Luse, in The Biology of Myelin (S. R. Korey, ed.), Hoeber-Harper Book, New York (1959).

    Google Scholar 

  13. C. P. Wendell-Smith, M. J. Blunt, F. Baldwin, and P. B. Paisley, Neurone-satellite cell relationship, Nature 205: 781–782 (1965).

    Article  Google Scholar 

  14. H. S. Gasser and J. Erlanger, The role played by the size of the constituent fibers of a nerve trunk in determining the form of its action potential wave, Am. J. Physiol. 80: 522–547 (1927).

    Google Scholar 

  15. H. S. Gasser and J. Erlanger, Electrical signs of nervous action, University of Pennsylvania Press, Philadelphia (1937).

    Google Scholar 

  16. G. H. Bishop and P. Heinbecker, Differentiation of axon types in visceral nerve by means of the potential record, Am. J. Physiol. 94: 170–200 (1930).

    Google Scholar 

  17. F. Buchthal and A. Rosenfalck, Evoked action potential and conduction velocity in human sensory nerves, Brain Res. 3: 1–122 (1966).

    Article  Google Scholar 

  18. D. Duncan, A relation between axon diameter and myelination determined by measurement of myelinate spinal root fibers, J. Comp. Neurol. 60: 437–472 (1934).

    Article  Google Scholar 

  19. R. L. Friede and T. Samorajski, Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice, J. Comp. Neurol. 130: 223–232 (1967).

    Article  PubMed  CAS  Google Scholar 

  20. H. Hyden, S. Levtrup, and A. Pigón, Cytochrome oxidase and succinoxidase activities in spinal ganglion cells and in glial capsule cells, J. Neurochem. 2: 304–311 (1958).

    Article  PubMed  CAS  Google Scholar 

  21. H. Hyden, in Neurochemistry (K. A. C. Elliott, J. H. Page, and J. H. Quastel, eds.), 2nd ed., C. C. Thomas, Springfield, Illinois (1962).

    Google Scholar 

  22. H. Hyden and P. W. Lange, A kinetic study of the neurone-glia relationship, J. Cell Biol. 13: 233–237 (1962).

    Article  PubMed  CAS  Google Scholar 

  23. O. H. Lowry, N. R. Roberts, and C. J. Lewis, The analysis of single cells, J. Biol. Chem. 222: 97–107 (1956).

    Google Scholar 

  24. O. H. Lowry, N. R. Roberts, and C. J. Lewis, Quantitative histochemistry of the retina, J. Biol. Chem. 220: 879–92, (1956).

    Google Scholar 

  25. C. E. Lumsden, in Pathology of Tumors of the Nervous System (D. S. Russell, L. J. Rubinstein, and C. E. Lumsden, eds.), p. 272, E. Arnold, London (1959).

    Google Scholar 

  26. S. P. R. Rose, Preparation of enriched fractions from cerebral cortex containing isolated metabolically active neuronal cells, Nature 206: 621–22 (1965).

    Article  PubMed  CAS  Google Scholar 

  27. S. P. R. Rose, Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells, Biochem. J. 102: 33–43 (1967).

    PubMed  CAS  Google Scholar 

  28. G. Brante, Studies on lipids in the nervous system with special reference to quantitative chemical determination and topical distribution, Acta Physiol. Scand. (Suppl. 63)18: 1–189 (1949).

    Google Scholar 

  29. S. N. Nayyar, R. E. McCaman, and R. F. Heimburger, Phospholipid composition of human brain tumors, Federation Proc. 19: 232 (1960).

    Google Scholar 

  30. K. Gopal, E. Grossi, P. Paoletti, and M. Usardi, Lipid composition of human intracranial tumors: A biochemical study, Acta Neurochir. (Wien) 11: 333–347 (1963).

    Article  CAS  Google Scholar 

  31. H. M. Rapport, L. Graf, and J. Yariv, Immunochemical studies of organ and tumor lipids, Arch. Biochem. Biophys. 92: 438 (1961).

    Article  PubMed  CAS  Google Scholar 

  32. M. M. Rapport, L. Graf, and N. F. Alonzo, Comparison of human tumor and ox spleen cytosides, Federation Proc. 18: 307 (1959).

    Google Scholar 

  33. T. Kosaki, T. Ikoda, Y. Kotani, S. Nakagawa, and T. Saka, A new phospholipid, malignolipin in human malignant tumors, Science 127: 1176–1177 (1958).

    Article  PubMed  CAS  Google Scholar 

  34. D. P. Coman, Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas, Cancer Res. 4: 625–629 (1944).

    Google Scholar 

  35. M. Abercrombie and E. J. Ambrose, Interference microscope studies of cell contacts in tissue culture, Exptl. Cell Res. 15: 332–345 (1958).

    Article  PubMed  CAS  Google Scholar 

  36. E. J. Ambrose, A. M. James, and J. H. B. Lowick, Differences between the electrical charge carried by normal and homologous tumor cells, Nature (London) 177: 576–577 (1956).

    Article  Google Scholar 

  37. L. Purdom, E. J. Ambrose, and G. Klein, A correlation between electrical surface charge and some biological characteristics during the stepwise progression of a mouse sarcoma, Nature (London) 181: 1586–1587 (1958).

    Article  CAS  Google Scholar 

  38. E. J. Ambrose, Henry Ford International Symposium: Biological Interactions in Normal and Neoplastic Growth (J. M. Brennan and W. L. Simpson, eds.), Churchill, London (1962).

    Google Scholar 

  39. H. O. Christensen Lou, J. Clausen, and F. Bierring, Phospholipids and glycolipids in the central nervous system, J. Neurochem. 12: 619–627 (1965).

    Article  Google Scholar 

  40. H. O. Christensen Lou and J. Clausen, Polar lipids of oligodendrogliomas, J. Neurochem. 15: 263–264 (1968).

    Article  Google Scholar 

  41. E. DeRobertis, A. Pellegrino de Iraldi, G. Rodriguez de Lores Arnaiz, and L. Salganicoff, Cholinergic and noncholinergic nerve endings in rat brain-I, J. Neurochem. 9: 23–35 (1962).

    Article  CAS  Google Scholar 

  42. V. P. Whittaker, The isolation and characterization of acetylcholine containing particles from brain, Biochem. J. 72: 694–706 (1959).

    PubMed  CAS  Google Scholar 

  43. L. A. Autilio, W. T. Norton, and R. D. Terry, The preparation and some properties of purified myelin from the central nervous system, J. Neurochem. 11: 17–27 (1964).

    Article  PubMed  CAS  Google Scholar 

  44. E. A. Bering, Water exchange of central nervous system and cerebrospinal fluid, J. Neurosurg. 9: 275 (1952).

    Article  PubMed  Google Scholar 

  45. H. M. Pappius, in Biology of Neuroglia (E. D. P. DeRobertis and R. Cawca, eds.), pp. 135–154, Elsevier, Amsterdam (1965).

    Google Scholar 

  46. H. Mcllwain, Chemical Exploration of the Brain, Elsevier, Amsterdam (1963).

    Google Scholar 

  47. R. J. Rossiter, in Neurochemistry (K. A. C. Elliott, I. H. Page, and J. H. Quastel, eds.), pp. 40 and 42, C. C. Thomas, Springfield, Illinois (1962).

    Google Scholar 

  48. R. Katzman, Electrolyte distribution in mammalian central nervous system, Neurology 11: 27–36 (1961).

    Article  PubMed  CAS  Google Scholar 

  49. H. F. Bradford and S. P. R. Rose, Ionic accumulation and membrane properties of enriched preparation of neurons and glia from mammalian cerebral cortex, J. Neurochem. 14: 373–375 (1967).

    Article  PubMed  CAS  Google Scholar 

  50. G. Levi, R. Blasberg, and A. Lajtha, Substrate specificity of cerebral amino acid exit in vitro, Arch. Biochem. Biophys. 114: 339–351 (1966).

    Article  CAS  Google Scholar 

  51. S. Furst, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism of the brain-III. J. Neurochem. 2: 216–225 (1958).

    Article  PubMed  CAS  Google Scholar 

  52. F. T. Mérei and F. Gallyas, Quantitative determination of (35S) methionine incorporated into proteins of cell groups or nuclei of the central nervous system, J. Neurochem. 11: 251256 (1964).

    Google Scholar 

  53. J. Altman, Regional utilization of leucine-H3 by normal rat brain, J. Histochem. Cytochem. 11: 741–750 (1963).

    Article  CAS  Google Scholar 

  54. J. L. Fox, Development of recent thoughts on intracranial pressure and the blood-brain barrier, J. Neurosurg. 21: 909–967 (1964).

    Article  PubMed  CAS  Google Scholar 

  55. S. Berl and H. Waelsch, Determination of glutamic acid, glutamine, glutathione, and y-aminobuturic acid and their distribution in brain tissue, J. Neurochem. 3: 161–169 (1958).

    Article  PubMed  CAS  Google Scholar 

  56. I. P. Lowe, E. Robins, and G. S. Eyerman, The fluorimetric measurement of glutamic decarboxylase and its distribution in brain, J. Neurochem. 3: 8–18 (1958).

    Article  PubMed  CAS  Google Scholar 

  57. R. A. Salvador and R. W. Albers, The distribution of glutamic-y-aminobutyric transami nase in the nervous system of the rhesus monkey, J. Biol. Chem. 234: 922–925 (1959).

    PubMed  CAS  Google Scholar 

  58. R. W. Albers and R. O. Brady, The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey, J. Biol. Chem. 234: 926–928 (1959).

    PubMed  CAS  Google Scholar 

  59. A. Lajtha and P. J. Mela, The brain barrier system-I. The exchange of free amino acids between plasma and brain, J. Neurochem. 7: 210–217 (1961).

    Article  CAS  Google Scholar 

  60. L. T. Graham, Jr., R. P. Shank, R. Werman, and M. H. Aprison, Distribution of some synaptic transmitter suspects in cat spinal cord: Glutamic acid, aspartic acid, y-aminobutyric acid, glycine and glutamine, J. Neurochem. 14: 465–472 (1967).

    Article  PubMed  CAS  Google Scholar 

  61. P. B. Müller and H. Langemann, Distribution of glutamic acid decarboxylase activity in human brain, J. Neurochem. 9: 399–401 (1962).

    Article  Google Scholar 

  62. L. Salganicoff and E. DeRobertis, Subcellular distribution of the enzymes of the glutamic acid, glutamine and y-aminobutyric acid cycles in rat brain, J. Neurochem. 12: 287–309 (1965).

    Article  PubMed  CAS  Google Scholar 

  63. G. Levi and A. Lajtha, The pattern of mammalian brain gangliosides-II, J. Neurochem. 12: 629–638 (1965).

    Article  Google Scholar 

  64. G. Levi, A. Cherayil, and A. Lajtha, Cerebral amino acid transport in vitro-III. J. Neurochem. 12: 757–770 (1965).

    Article  PubMed  CAS  Google Scholar 

  65. N. Popov, W. Pohle, V. Rösler, and H. Matthies, Regionale Verteilung von y-aminobuttersäure, Glutaminsäure, Asparaginsäure, Dopamin, Noradrenalin und Serotonin im Rattenhirn, Acta Biol. Med. Ger. 18:695-702 (1967).

    Google Scholar 

  66. R. J. Haslam and H. A. Krebs, The metabolism of glutamate in homogenates and slices of brain cortex, Biochem. J. 88: 566–578 (1963).

    PubMed  CAS  Google Scholar 

  67. D. Hathway, E. Mallinson, and D. A. Akintonwa, Effects of dieldrin, picrotoxin and telodrin on the metabolism of ammonia in brain, Biochem. J. 94: 676–686 (1965).

    PubMed  CAS  Google Scholar 

  68. H. Weil-Malherbe, in Neurochemistry (K. A. Elliot, I. H. Page, J. H. Quastel, eds.), pp. 321–330, C. C. Thomas, Springfield, Illinois (1962).

    Google Scholar 

  69. C. G. Honegger and R. Honegger, Votatile amines in brain, Nature 185: 530–532 (1960).

    Article  PubMed  CAS  Google Scholar 

  70. T. L. Perry, S. Hansen, and L. MacDougal, Amines of human whole brain, J. Neurochem. 14: 775–782 (1967).

    Article  PubMed  CAS  Google Scholar 

  71. E. DeRobertis, Adrenergic endings and vesicles isolated from brain, Pharmacol. Rev. 18: 413–424 (1966).

    CAS  Google Scholar 

  72. A. Carlsson, B. Falch, and N. A. Hillarp, Cellular localization of brain monoamines, Acta Physiol. Scand. (Suppl. 196) 56: 1–28 (1962).

    Article  CAS  Google Scholar 

  73. A. Dahlström and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system, Acta Physiol. Scand. (Suppl. 232) 62: 1–55 (1964).

    Google Scholar 

  74. E. DeRobertis, Ultrastructure and cytochemistry of the synaptic region, Science 156: 907914 (1967).

    Google Scholar 

  75. Y. Gutman and H. Weil-Malherbe, The intracellular distribution of brain catecholamines, J. Neurochem. 14: 619–625 (1967).

    Article  PubMed  CAS  Google Scholar 

  76. J. Glowinski and L. L. Iversen, Regional studies of catecholamines in the rat brain-I. J. Neurochem. 13: 655–669 (1966).

    Article  PubMed  CAS  Google Scholar 

  77. L. L. Iversen and J. Glowinski, Regional differences in the rate of turnover of norepinephrine in the rat brain, Nature 210: 1006–1008 (1966).

    Article  PubMed  CAS  Google Scholar 

  78. L. L. Iversen and J. Glowinski, Regional studies of catecholamines in the rat brain-II, J. Neurochem. 13: 671–82 (1966).

    Article  PubMed  CAS  Google Scholar 

  79. G. G. Gottfries, A. M. Rosengren, and E. Rosengren, The occurrence of homovanillic acid in human brain, Acta Pharmacol. Toxicol. 23: 36–40 (1965).

    Article  CAS  Google Scholar 

  80. S. L. Manocha and G. H. Boume, Histochemical mapping of monoamine oxidase and lactic acid dehydrogenase in the pons and mesencephalon of squirrel monkey, J. Neurochem. 13: 1047–1056 (1966).

    Article  PubMed  CAS  Google Scholar 

  81. W. Y. Cheung and L. Salganicoff, Cyclic 3’,5’-nucleotide phosphodiesterase: Localization and latent activity in rat brain, Nature 214: 90–91 (1967).

    Article  PubMed  CAS  Google Scholar 

  82. B. Formby and J. Clausen, Topographic studies of noradrenaline transmitter function, Proc. 1st Intern. Congr. Neurochem., Strasbourg (1967).

    Google Scholar 

  83. J. Clausen and B. Formby, Effect of noradrenaline on phosphatase activity in synaptic membrane of the rat brain, Nature 213: 389–390 (1867).

    Article  Google Scholar 

  84. B. Formby and J. Clausen, Phosphatase activity related to synaptic transmitter function of noradrenaline in the central nervous system. In vitro studies, Z. Physiol. Chem. 349:349–356(1968);349:909–919(1968).

    Google Scholar 

  85. J. H. Quastel, in Neurochemistry (K. A. C. Elliott, J. H. Page, and J. H. Quastel, eds.), C. C. Thomas, Springfield, Illinois (1962).

    Google Scholar 

  86. E. Giacobini, in Morphological and Biochemical Correlates of Neural Activity (M. M. Cohen and R. S. Snider, eds.), Hoeber-Harper Book, New York (1964).

    Google Scholar 

  87. O. H. Lowry, N. R. Roberts, K. Y. Lerner, M. L. Wu, and A. L. Farr, Quantitative histochemistry of brain: I. Chemical methods, J. Biol. Chem. 207: 1–17 (1959).

    Google Scholar 

  88. O. H. Lowry, N. R. Roberts, K. Y. Lerner, M. L. Wu, and A. L. Farr, Quantitative histochemistry of brain III. Ammon’s Horn, J. Biol. Chem. 207: 39–49 (1954).

    PubMed  CAS  Google Scholar 

  89. O. H. Lowry, N. R. Roberts, and I. F. Kapphahn, Fluorimetric measurement of pyridine nucleotides, J. Biol. Chem. 224: 1047 (1957).

    PubMed  CAS  Google Scholar 

  90. L. J. King, G. M. Schoepfle, O. H. Lowry, J. V. Passonneau, and S. Wilson, Effects of electrical stimulation on metabolites in brain of decapitated mice, J. Neurochem. 14: 613618 (1967).

    Google Scholar 

  91. N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism in the levels of citric acid cycle intermediates, J. Biol. Chem. 241: 3997–4003 (1966).

    PubMed  CAS  Google Scholar 

  92. L. J. King, O. H. Lowry, J. V. Passonneau, and V. Venson, Effects of convulsants on energy reserves in the cerebral cortex, J. Neurochem. 14: 599–611 (1967).

    Google Scholar 

  93. C. Chatagnon and P. Chatagnon, Étude des protéines cérébrales solubles de l’humain, Ann. Biol. Clin. 18: 427–437 (1960).

    CAS  Google Scholar 

  94. K. Kiyota, Electrophoretic protein fractions and the hydrophilic property of brain tissue-I, II, J. Neurochem. 4: 202–216 (1959).

    Article  PubMed  CAS  Google Scholar 

  95. D. Karcher, M. van Sande, and A. Lowenthal, Micro-electrophoresis in agar gel of proteins of the cerebrospinal fluid and central nervous system, J. Neurochem. 4: 135–140 (1959).

    Article  PubMed  CAS  Google Scholar 

  96. W. Gerhardt-Hansen and J. Clausen, Electrophoresis and immunoelectrophoresis of extractable proteins in brain tissue, Danish Med. Bull. 9: 9–13 (1962).

    PubMed  CAS  Google Scholar 

  97. B. W. Moore, A Soluble protein characteristic of the nervous system, Biochem. Biophys. Res. Commun. 19: 739–744 (1965).

    Article  PubMed  CAS  Google Scholar 

  98. E. C. Laterre, J. F. Heremans, and A. Carbonara, Extracts from brain and kidney, Clin. Chim. Acta 10: 197–209 (1964).

    Article  PubMed  CAS  Google Scholar 

  99. B. W. Moore and D. McGregor, Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver, J. Biol. Chem. 240: 1647–1653 (1965).

    PubMed  CAS  Google Scholar 

  100. E. Kosinski and P. Grabar, Immunochemical studies of rat brain, J. Neurochem. 14: 273281 (1967).

    Google Scholar 

  101. K. Warecka and H. Bauer, Studies on “brain specific” proteins in aqueous extracts of brain tissue, J. Neurochem. 14: 783–787 (1967).

    Article  PubMed  CAS  Google Scholar 

  102. J. Klatzo, J. Miguel, and R. Otenasek, The application of fluorescein labelled serum proteins (FLSP) to the study of vascular permeability in the brain, Acta Neuropathol. 2: 144–160 (1962).

    Article  Google Scholar 

  103. G. M. Hochwald, G. J. Thorbecke, and R. Asofsky, Sites of formation of immune globulins and of a component of C’3, J. Exptl. Med. 114: 459–470 (1961).

    Article  CAS  Google Scholar 

  104. D. M. Robertson, The paper electrophoretic distribution of soluble proteins in different regions of human brain, J. Neurochem. 5: 145–149 (1960).

    Article  PubMed  CAS  Google Scholar 

  105. R. S. Piha, R. M. Bergstrom, L. Bergstrom, A. J. Uusitalo, and S. S. Oja, Studies in the metabolism of brain protein-I, Ann. Med. Exptl. Biol. Fenniae 41: 485–497 (1963).

    CAS  Google Scholar 

  106. A. V. Palladin and N. Vertaimer, Protein renewal in the central nervous system in different functional states, Dokl. Akad. Nauk SSSR 102:319–321 (1955). [cf. Chem. Abstr. 49:14971 (1955).]

    Google Scholar 

  107. G. E. Vladimirov and A. P. Urinson, Glycine metabolism in the cerebral tissue of the rat in normal resting and in amytal-induced sleep, Biochemistry 22: 665–707 (1957).

    CAS  Google Scholar 

  108. L. F. Pantchenko, J. Physiol. USSR 44: 243–248 (1958).

    Google Scholar 

  109. D. H. Clouet and D. Richter, The incorporation of (35S) labelled methionine into the proteins of the rat brain, J. Neurochem. 3: 219–229 (1959).

    Article  PubMed  CAS  Google Scholar 

  110. D. Richter, M. K. Gaitonde, and P. Cohn, in Structure and Function of the Cerebral Cortex (D. B. Tower and J. P. Schack, eds.), p. 340, Elsevier, Amsterdam (1960).

    Google Scholar 

  111. A. V. Palladin, in Regional Neurochemistry (S. S. Kety and J. Elkes, eds.), Pergamon Press, Oxford (1961).

    Google Scholar 

  112. J. D. Robertson, in Cellular Membranes in Development (M. Locke, ed.), pp. 1–81, Academic Press, New York (1964).

    Google Scholar 

  113. D. Green and S. Fleicher, The role of lipids in mitochondrial electron transfer and oxidative phosphorylation, Biochim. Biophys. Acta 70: 554–582 (1963).

    Article  PubMed  CAS  Google Scholar 

  114. E. G. Brunngraber, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. I, pp. 223–244, Plenum Press, New York (1969).

    Google Scholar 

  115. J. Folch, J. Ascoli, M. Lees, J. A. Meath, and F. N. LeBaron, Preparation of lipid extracts from brain tissue, J. Biol. Chem. 191: 833–841 (1951).

    PubMed  CAS  Google Scholar 

  116. M. B. Lees, S. Carr, and J. Bolch, Purification of bovine brain white matter proteolipids by dialysis in organic solvents, Biochim. Biophys. Acta 84: 464–466 (1964).

    PubMed  CAS  Google Scholar 

  117. M. Matsumoto, R. Matsumoto, and J. Folch-Pi, The chromatographic fractionation of brain white matter proteolipids, J. Neurochem. 11: 829–838 (1964).

    Article  PubMed  CAS  Google Scholar 

  118. D. Tenenbaum and J. Folch-Pi, The preparation and characterization of water-soluble proteolipid protein from bovine brain white matter, Biochim. Biophys. Acta 115: 141–147 (1966).

    Article  PubMed  CAS  Google Scholar 

  119. J. Folch-Pi, in Brain Lipids and Lipoproteins and Leucodystrophies (J. Folch-Pi and H. Bauer, eds.), Elsevier, Amsterdam (1967).

    Google Scholar 

  120. L. Amaducci, in Regional Neurochemistry (S. S. Kety and J. Elkes, eds.), Pergamon Press, London (1961).

    Google Scholar 

  121. W. L. G. Gent, N. A. Gregson, D. B. Gammack, and J. H. Raper, The lipid protein unit in myelin, Nature 204: 553–555 (1964).

    Article  PubMed  CAS  Google Scholar 

  122. J. Folch and M. Lees, Proteolipids, a new type of tissue lipoproteins, J. Biol. Chem. 191: 807–817 (1951).

    PubMed  CAS  Google Scholar 

  123. C. B. Klee and L. Sokoloff, Amino acid incorporation into proteolipid of myelin in vitro, Proc. Natl. Acad. Sci. 53:1014–1021 (1965).

    Google Scholar 

  124. A. Ouamina and S. Bogoch, Subcellular fractionation of glycoproteins and mucoids of human and rat brain, Protides Biol. Fluids 13: 211–216 (1966).

    Google Scholar 

  125. P. J. van Alten and A. LaVelle, Antigenic changes in developing hamster brain using antisera to myelinated and unmyelinated brain, Exptl. Neurol. 14: 115–133 (1966).

    Article  Google Scholar 

  126. J. A. Lowden, M. A. Moscarello, and J. Morecki, Can. J. Biochem. 44: 567 (1966).

    Article  PubMed  CAS  Google Scholar 

  127. S. E. Kornguth, J. W. Anderson, and G. Scott, Temporal relationship between myelinogenesis and the appearance of a basic protein in the spinal cord of the rat, J. Comp. Neurol. 127: 1–17 (1966).

    Article  PubMed  CAS  Google Scholar 

  128. E. Costa and B. B. Brodie, in Progress in Brain Research, Vol. 8, Biogenic Amines (H. E. Himwich and W. Himwich eds.), pp. 168–185, Elsevier, Amsterdam (1964).

    Google Scholar 

  129. H. J. Colmant, Ergebnisse der Enzymhistochemie am zentralen und peripheren Nervensystem, Neurol. Psychiat. 2: 61 (1961).

    Google Scholar 

  130. R. L. Friede, Topographic Brain Chemistry, Academic Press, New York (1966).

    Google Scholar 

  131. J. L. Strominger and O. H. Lowry, The quantitative histochemistry of brain, J. Biol. Çhém. 213: 635–646 (1955).

    PubMed  CAS  Google Scholar 

  132. E. Robins, N. R. Roberts, K. M. Eydt, O. H. Lowry, and D. E. Smith, Microdetermination of a-keto acids with special references to malic-lactic and glutamic dehydrogenases in brain, J. Biol. Chem. 218: 897–909 (1956).

    PubMed  CAS  Google Scholar 

  133. D. B. McDougal, Jr., D. W. Schulz, J. V. Passonneau, J. R. Clark, M. A. Reynolds, and O. H. Lowry, Quantitative studies of white matter-I. Enzymes involved in glucose-6phosphate metabolism, J. Gen. Physiol. 44:487–498(1961).

    Google Scholar 

  134. D. B. McDougal, Jr., E. M. Jones, and U. I. Sila, Distribution of enzymes of the tricarboxylic acid cycle in white matter, Ultrastructure Metab. Nervous Sys. 40: 182–188 (1962).

    Google Scholar 

  135. J. L. W. Thudichum, A Treatise on the Chemical Constitution of Brain, Bailliere, Tindall, and Cox, London (1884).

    Google Scholar 

  136. A. C. Johnson, A. R. McNabb, and R. J. Rossiter, Lipids of normal brain, Biochem. J. 43: 573–577 (1948).

    PubMed  CAS  Google Scholar 

  137. J. N. Cumings, Brain 76: 553 (1953).

    Google Scholar 

  138. G. Rouser, G. Galley, and G. Kritchevsky, Lipid class composition of normal human brain and variations in metachromatic leucodystrophy (Tay-Sachs, Niemann-Pick, chronic Gaucher’s and Alzheimers diseases), J. Am. Oil Chemists’ Soc. 42: 404–410 (1965).

    Article  CAS  Google Scholar 

  139. L. Svennerholm, in Brain Lipids and Lipoproteins and the Leucodystrophies (J. Folch-Pi and H. Bauer, eds.), Elsevier, Amsterdam (1963).

    Google Scholar 

  140. J. S. O’Brien, D. L. Fillerup, and J. F. Mead, Brain lipids. I. Quantification and fatty acid composition of cerebroside sulfate in human cerebral gray and white matter, J. Lipid Res. 5: 109–116 (1964).

    Google Scholar 

  141. D. L. Fillerup and J. F. Mead, The lipids of the ageing human brain, Lipids 2: 295–298 (1967).

    Article  PubMed  CAS  Google Scholar 

  142. W. T. Norton and L. A. Autilio, The chemical composition of bovine CNS myelin, Ann. N.Y. Acad. Sci. 122: 77–85 (1965).

    Article  PubMed  CAS  Google Scholar 

  143. J. S. O’Brien, Stability of the myelin membrane, Science 147:1099-1107 (1965).

    Google Scholar 

  144. H. Pilz and E. Mehl, Untersuchungen zur Lipoidzusammensetzung der menschlichen myelins, Z. Physiol. Chem. 346: 306–309 (1966).

    CAS  Google Scholar 

  145. E. F. Soto, L. Seminario de Bohner, and M. C. Calvino, Chemical composition of myelin and other subcellular fractions isolated from bovine white matter, J. Neurochem. 13: 989998 (1966).

    Google Scholar 

  146. L.A. Horrocks, Composition of myelin from peripheral and central nervous systems of the squirrel monkey, J. Lipid Res. 8: 569–576 (1967).

    PubMed  CAS  Google Scholar 

  147. G. Rouser, A. J. Baumann, G. Kritchevsky, D. Heller, and J. S. O’Brien, Quantitative chromatographic fractionation of complex lipid mixtures, “brain lipids, ” J. Am. Oil Chemists’ Soc. 38: 544 (1961).

    Article  CAS  Google Scholar 

  148. J. S. O’Brien, D. L. Fillerup, and J. F. Mead, Brain lipids. I. Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline, and serine glycerophosphatides in human cerebral grey and white matter, J. Lipid Res. 5: 329–338 (1964).

    PubMed  Google Scholar 

  149. Y. Kishimoto and N. S. Radin, Isolation and determination methods for brain cerebro-sides, hydroxy fatty acids, and unsaturated and saturated fatty acids, J. Lipid Res. 1: 72–78 (1959).

    CAS  Google Scholar 

  150. R. Kuhn and H. Wiegandt, Über ein glucosaminhaltiges Gangliosid, Z. NaturArsch. 19b: 80–81 (1964).

    CAS  Google Scholar 

  151. L. Svennerholm, in The Amino-Sugars, Vol. IIA (E. A. Balazs and R. W. Jeanloz, eds.), pp. 381–400, Academic Press, New York (1965).

    Google Scholar 

  152. J. Clausen, H. O. Christensen Lou, and H. Andersen, Phospholipid and glycolipid patterns of infant and foetal brain. Thin-layer chromatographic studies, J. Neurochem. 12: 599–606 (1965).

    Article  PubMed  CAS  Google Scholar 

  153. C. Galli and D. ReCecconi, Lipid changes in rat brain during maturation, Lipids 2: 76–82 (1967).

    Article  PubMed  CAS  Google Scholar 

  154. G. Blix, Zur kenntnis der schwefelhaltigen Lipoidstoffe des Gehirns über Cerebronschwelferlsäure, Z. Physiol. Chem. 219: 82–98 (1933).

    Article  CAS  Google Scholar 

  155. E. Klenk and P. Böhm, Zur kenntnis der Kaphalinfraktion des Gehirns, Z. Physiol. Chem. 288: 98–107 (1951).

    CAS  Google Scholar 

  156. H. Debuch, Beitrag zur chemischen konstitution der acetalphosphatide und zur Frage des Vorkommens des Colamin-Kephalins im Gehirn, Z. Physiol. Chem. 304: 109–137 (1956).

    Article  CAS  Google Scholar 

  157. H. Jatzkewitz, Zwei typen von Cerebrosid-schwefelsäureestern als sog. “Prälipoide und Speicher Substanzen bei der Leukodystrophie Typ Scholz,” Z. Physiol. Chem. 311: 279282 (1958).

    Google Scholar 

  158. Y. Kishimoto and N. S. Radin, Structures of the normal unsaturated fatty acids of brain sphingolipids, J. Lipid Res. 4: 437–443 (1963).

    PubMed  CAS  Google Scholar 

  159. H. Jatzkewitz, Cerebron-und Kerasin-schwefelsäureester als Speichersubstanzen bei der Leukodystrophie, typ Scholz, Z. Physiol. Chem. 320: 134–148 (1960).

    Article  CAS  Google Scholar 

  160. Y. Kishimoto and N. S. Radin, Structures of the ester-linked mono-and diunsaturated fatty acids of pig brain, J. Lipid Res. 5: 98–102 (1964).

    CAS  Google Scholar 

  161. K. Bernhard and P. Lesch, Ein Beitrag zur Fettsäurezusammensetzung der Cerebroside, Sphingomyelin und Lecithine aus menschlichem Hirn, Hely. Chim. Acta 46: 1798–1801 (1963).

    Article  CAS  Google Scholar 

  162. H. S. Hendrickson and C. E. Ballou, Ion exchange chromatography of intact brain phosphinositides on diethylaminoethyl cellulose by gradient salt elution in a mixed solvent system, J. Biol. Chem. 239: 1369–1373 (1964).

    PubMed  CAS  Google Scholar 

  163. J. S. O’Brien and G. Rouser, The fatty acid composition of brain sphingolipids: sphingomyelin, ceramide, cerebroside and cerebroside sulfate, J. Lipid Res. 5: 339–343 (1964).

    PubMed  Google Scholar 

  164. J. S. O’Brien and E. L. Sampson, Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter and myelin, J. Lipid Res. 6: 545551 (1965).

    Google Scholar 

  165. L. F. Eng, B. Gerstl, R. B. Hayman, Y. L. Lee, R. W. Tietsort, and J. K. Smith, The 2hydroxy fatty acids in white matter of infant and adult brains, J. Lipid Res. 6: 135–139 (1965).

    PubMed  CAS  Google Scholar 

  166. S. G. Pakkala, D. L. Fillerup, and J. F. Mead, The very long chain fatty acids of human brain sphingolipids, Lipids 1: 449–450 (1966).

    Article  PubMed  CAS  Google Scholar 

  167. P. Lesch, S. Meier, and K. Bernhard, Die Neutrallipide aus Hirnen von Früh-und Neugeburten, He/v. Chim. Acta 49: 1215–1221 (1966).

    Article  CAS  Google Scholar 

  168. P. Lesch, S. Meier, and K. Bernhard, Zur Kenntnis der Neutrallipide aus Säuglinshirnen, Hely. Chim. Acta 50: 207–212 (1966).

    Article  Google Scholar 

  169. H. Jatzkewitz, Eine neue Methode zur Quantitativen Ultramikrobestimmung der Sphingolipoide aus Gehirn, Z. Physiol. Chem. 336: 25–39 (1964).

    Article  CAS  Google Scholar 

  170. K. Kataoka, P. W. Ramwell, and S. Jessup, Prostaglandins: Localization in subcellular particles of rat cerebral cortex, Science 157: 1187–1189 (1967).

    Article  PubMed  CAS  Google Scholar 

  171. S. E. Kerr, C. W. Hampel, and J. J. Ghantus, The carbohydrate metabolism of brain—IV, J. Biol. Chem. 119: 405–421 (1937).

    CAS  Google Scholar 

  172. G. Brante, in Metabolism of the Nervous System (D. Richter, ed.), p. 112, Pergamon Press, London (1957).

    Google Scholar 

  173. I. J. Young and L. G. Abood, Histological demonstration of hyaluronic acid in the central nervous system, J. Neurochem. 6: 89–94 (1960).

    Article  CAS  Google Scholar 

  174. L. G. Abood and S. K. Abdul-Haj, Histochemistry and characterization of hyaluronic acid in axons of peripheral nerve, J. Neurochem. 1:119–125 (1956).

    Google Scholar 

  175. J. Clausen and P. Rosenkast, Isolation of acid mucopolysaccharides of human brain, J. Neurochem. 9: 393–398 (1962).

    Article  Google Scholar 

  176. J. Clausen and A. Hansen, Acid mucopolysaccharides of human brain, J. Neurochem. 10: 165–168 (1963).

    Article  PubMed  CAS  Google Scholar 

  177. M. M. Szabo and E. Roboz-Einstein, Acidic polysaccharides in the central nervous system, Arch. Biochem. Biophys. 98: 406–412 (1962).

    Article  CAS  Google Scholar 

  178. R. U. Margolis, Acid mucopolysaccharides and proteins of bovine whole brain, white matter and myelin, Biochim. Biophys. Acta 141: 91–102 (1967).

    Article  PubMed  CAS  Google Scholar 

  179. J. Clausen, H. V. Dyggve, J. C. Melchior, and H. O. Christensen Lou, Chemical studies in gargoylism, Arch. Disease Childhood 42: 62–69 (1967).

    Article  CAS  Google Scholar 

  180. Z. Stary, A. H. Wardi, D. L. Turner, and W.S. Allen, Arabinose as a mucopolysaccharide component in human and animal brain tissue, Arch. Biochem. Biophys. 110: 388–394 (1965).

    Article  PubMed  CAS  Google Scholar 

  181. R. Landolt, H. H. Hess, and C. Thalheimer, Regional distribution of some chemical structural components of the human nervous system—I, J. Neurochem. 13: 1441–1452 (1966).

    Article  PubMed  CAS  Google Scholar 

  182. H. H. Hess and C. Thalheimer, Microassay of biochemical structural components in nervous tissues—I, J. Neurochem. 12: 193–204 (1965).

    Article  PubMed  CAS  Google Scholar 

  183. H. V. Koenig, An autoradiographic study of nucleic acid and protein turnover in the mammalian neuraxis, J. Biophys. Biochem. Cytol. 4: 785–792 (1958).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Clausen, J. (1969). Gray-White Matter Differences. In: Lajtha, A. (eds) Chemical Architecture of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7154-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7154-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7156-8

  • Online ISBN: 978-1-4615-7154-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics