Skip to main content

Abstract

The high concentration of cholesterol in the nervous tissues and its localization in cell membranes, notably myelin, indicate an important role for this sterol and related compounds in growth, maturation, and metabolism of the brain. However, very little is known, not only about sterol function, but, until recently, about sterol composition and pathways of biosynthesis and metabolism in the brain, especially when compared with the liver. This lack of information is due to the great difficulty in isolating and identifying other sterols in the presence of large amounts of cholesterol and by the fact that age, anatomical areas, routes of administration greatly modify the results obtained in studying brain cholesterol biosynthesis and turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Folch, M. Lees, and G. H. Sloane-Stanley, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226: 497 – 509 (1957).

    PubMed  CAS  Google Scholar 

  2. G. Rouser, G. Kritchevsky, C. Galli, A. Yamamoto, and A. G. Knudson, Jr., in Inborn Disorders of Sphingolipids Metabolism ( S. M. Aronson and B. W. Volk, eds.), pp. 303 – 316, Pergamon Press, Oxford/New York (1966).

    Google Scholar 

  3. A. N. Siakotos and G. Rouser, Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography, J. Am. Oil Chem. Soc. 42: 913 – 919 (1965).

    Article  PubMed  CAS  Google Scholar 

  4. B. Borgström, Investigation on lipid separation methods: Separation of phospholipids from neutral fat and fatty acids, Acta Physiol. Scand. 25: 101 – 110 (1952).

    Google Scholar 

  5. G. Rouser, A. J. Bauman, G. Kritchevsky, D. Heller, and J. O’Brien, Quantitative chromatographic fractionation of complex lipid mixtures: Brain lipids, J. Am. Oil Chem. Soc. 38: 544 – 555 (1961).

    Article  CAS  Google Scholar 

  6. G. Rouser, C. Galli, and G. Kritchevsky, Lipid class composition of normal human brain and variations in metachromatic leucodistrophy, Tay-Sachs, Niemann-Pick, chronic Gaucher’s and Alzheimer’s diseases, J. Am. Oil Chem. Soc. 42: 404 – 410 (1965).

    Article  PubMed  CAS  Google Scholar 

  7. M. G. Horning, E. A. Williams and E. C. Horning, Separation of tissue cholesterol esters and triglycerides by silicic acid chromatography, J. Lipid Res. 1: 482 – 485 (1960).

    PubMed  CAS  Google Scholar 

  8. G. Rouser, personal communication.

    Google Scholar 

  9. E. Heftmann, B. E. Wright, and G. U. Liddel, The isolation of Δ22-stigmastane-3ß-ol from Dictiostelium discoideum, Arch. Biochem. Biophys. 91:266–270 (1960).

    Google Scholar 

  10. V. C. Joshi, J. Jayaraman, and T. Ramasarma, Incorporation of mevalonic acid-2-C14 into Ubichromenol and coenzyme Q in rat, Indian J. Exptl. Biol. 1: 113 – 123 (1963).

    CAS  Google Scholar 

  11. G. J. Schroepfer, Jr., and I. Y. Gore, Chromatographic separation of allylic alcohols on silicic acid columns: analysis of the nonsaponifiable lipids on an ascites tumor derived from a benzpyrene-induced sarcoma, J. Lipid Res. 4: 266 – 269 (1963).

    PubMed  CAS  Google Scholar 

  12. W. M. Sperry and M. Webb, A revision of the Schoenheimer-Sperry method for cholesterol determination, J. Biol. Chem. 187:97–110 (1950).

    PubMed  CAS  Google Scholar 

  13. J. J. Kabara, J. T. McLaughlin, and C. A. Riegel, Quantitative microdetermination of cholesterol using tomatine as precipitating agent, Anal. Chem. 33: 305 – 307 (1961).

    Article  CAS  Google Scholar 

  14. L. J. Goad, and T. W. Goodwin, The biosynthesis of sterols in higher plants, Biochem. J. 99: 735 – 746 (1966).

    PubMed  CAS  Google Scholar 

  15. D. Kritchevsky, Analysis of cholesterol in Cholesterol, pp. 232–255, John Wiley & Sons Inc., New York, and Chapman & Hall Ltd., London (1958).

    Google Scholar 

  16. A. Zlatkis, B. Zak, and A. J. Boyle, A new method for the direct determination of serum cholesterol, J. Lab. Clin. Med. 41:486–492 (1953).

    PubMed  CAS  Google Scholar 

  17. L. L. Abell, B. B. Levy, B. B. Brodie, and F. E. Kendall, A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity, J. Bio!. Chem. 195: 357 – 366 (1952).

    CAS  Google Scholar 

  18. J. Glover, Determination of cholesterol and 7-dehydrosterols, in monograph No. 2 The Determination of Sterols, Society for Analytical Chemistry, London, pp. 10 – 17 (1964).

    Google Scholar 

  19. J. Avigan, D. Steinberg, H. E. Vroman, M. J. Thompson, and E. Mosettig, Studies of cholesterol biosynthesis: I. The identification of desmosterol in serum and tissues of animals and man treated with Mer-29, J. Bio!. Chem. 235: 3123 – 3126 (1960).

    CAS  Google Scholar 

  20. M. Glover, J. Glover, and R. A. Morton, Provitamin D3 in tissues and the conversion of cholesterol to 7-dehydro-cholesterol in vivo, Biochem. J., 51: 1 – 9, (1952).

    PubMed  CAS  Google Scholar 

  21. K. Schubert, G. Rose, and M. Bürger, Über das Vorkommen von dihydroxysterinen im Menschlichen Gehirn, Hoppe-Seylers Z. physiol. Chem. 326: 235 – 241 (1961).

    Article  PubMed  CAS  Google Scholar 

  22. J. W. Copius-Peereboom and H. W. Beekes, The analysis of mixtures of animal and vegetable fats, V. Separation of sterol acetates by thin-layer chromatography in reversed-phase systems and on silica gel G-silver nitrate layers, J. Chromat. 17: 99 – 113 (1965).

    Article  CAS  Google Scholar 

  23. J. W. Copius-Peereboom and H. W. Beekes, The analysis of mixtures of animal and vegetable fats, III. Separation of some sterols and sterol acetates by thin-layer chromatography, J. Chromai. 9: 316 – 320 (1962).

    Article  Google Scholar 

  24. R. D. Bennett and E. Heftmann, Thin-layer chromatography of sterols, J. Chromai. 9: 359–362 (1962).

    Google Scholar 

  25. J. Avigan, D. S. Goodman, and D. Steinberg, Thin-layer chromatography of sterols and steroids, J. Lipid Res. 4: 100 – 101 (1963).

    PubMed  CAS  Google Scholar 

  26. S. Fabro, Paper chromatography of cholesterol and desmosterol after bromination, J. Lipid Res. 3: 481–483 (1962).

    CAS  Google Scholar 

  27. J. R. Claude, Séparation du cholestérol, du desmostérol et du 5-dihydrocholestérol par chromatographie en couche mince après propionylation, J. Chromas. 17: 596–599 (1965).

    Article  CAS  Google Scholar 

  28. A. S. Truswell and W. D. Mitchell, Separation of cholesterol from its companions, cholestanol and Δ7-cholestenol, by thin-layer chromatography, J. Lipid Res. 6: 438–441 (1965).

    PubMed  CAS  Google Scholar 

  29. P. D. Klein, J. C. Knight, and P. A. Szczepanik, The behavior of sterols on silica surfaces and at other interfaces, J. Am. Oil Chem. Soc. 43: 275–280 (1966).

    Article  PubMed  CAS  Google Scholar 

  30. N. W. Di Tullio, C. S. Jacob, and W. L. Holmes, Thin layer chromatography and identification of free sterols, J. Chromai. 20: 354–357 (1965).

    Article  Google Scholar 

  31. H. E. Vroman and C. F. Cohen, Separation of sterol acetates by column and thin-layer argentation chromatographyJ. Lipid Res. 8: 150–152 (1967).

    PubMed  CAS  Google Scholar 

  32. D. R. Idler and C. A. Baumann, Skin sterols. II. Isolation of Δ7-cholestenol, J. Biol. Chem. 195: 623–628 (1952).

    PubMed  CAS  Google Scholar 

  33. W. M. Stokes, F. C. Hickey, and W. A. Fish, Chromatography of I131-labeled esters, J. Am. Chem. Soc. 76: 5174–5175 (1954).

    Article  CAS  Google Scholar 

  34. P. D. Klein and P. A. Szczepanik, The differential migration of sterol acetates on silica gels and its application to the fractionation of sterol mixtures, J. Lipid Res. 3: 460–466 (1962).

    CAS  Google Scholar 

  35. G. Galli and E. Grossi-Paoletti, Quantitative separation of C-27 sterol precursors of cholesterol, Lipids 2: 84–85 (1967).

    Article  PubMed  CAS  Google Scholar 

  36. F. Gautschi and K. Bloch, On the structure of an intermediate in the biological demethylation of lanosterol, J. Am. Chem. Soc. 79: 684–689 (1957).

    Article  CAS  Google Scholar 

  37. W. M. Stokes, W. A. Fish, and F. C. Hickey, Metabolism of cholesterol in the chick embryo. II. Isolation and chemical nature of two companion sterols, J. Biol. Chem. 220: 415–430 (1956).

    PubMed  CAS  Google Scholar 

  38. A. A. Kandutsch and A. E. Russell, Preputial gland tumor sterols. I. The occurrence of 24,25-dihydrolanosterol and a comparison with liver and the normal gland, J. Biol. Chem. 234: 2037–2042 (1959).

    CAS  Google Scholar 

  39. I. D. Frantz, Jr., Chromatography of unesterified sterols on silicic acid-super-cel, J. Lipid Res. 4:176–178 (1963).

    PubMed  CAS  Google Scholar 

  40. R. B. Clayton, A. N. Nelson, and I. D. Frantz, Jr., The skin sterols of normal and Triparanol treated rats, J. Lipid Res. 4:166–176 (1963).

    PubMed  Google Scholar 

  41. G. Galli and E. Grossi-Paoletti, Separation of cholesterol-desmosterol acetates by thin-layer and column chromatography on silica gel G-silver nitrate, Lipids, 2: 72–75 (1967).

    Article  PubMed  CAS  Google Scholar 

  42. S. Shefer, S. Hauser, and E. H. Mosbach, Biosynthesis of cholestanol: 5α-cholestan-3-one reductase of rat liver, J. Lipid Res. 7: 763–769 (1966).

    PubMed  CAS  Google Scholar 

  43. L. J. Morris, Separations of lipids by silver ion chromatography, J. Lipid Res. 7:717–732 (1966).

    PubMed  CAS  Google Scholar 

  44. J. F. Weiss, G. Galli, and E. Grossi-Paoletti, Sterols with 29, 28 and 27 carbon atoms metabolically related to cholesterol, occurring in developing and mature brain, J. Neurochem. 15: 563–575 (1968).

    Article  PubMed  CAS  Google Scholar 

  45. W. J. A. VandenHeuvel, C. C. Sweeley, and E. C. Horning, Separation of steroids by gas-chromatography, J. Am. Chem. Soc., 82: 3481–3482 (1960).

    Article  CAS  Google Scholar 

  46. E. C. Horning, K. C. Maddock, K. V. Anthony, and W. J. A. VandenHeuvel, Quantitative aspects of gas chromatographic separations in biological studies, Anal. Chem. 35: 526–532 (1963).

    CAS  Google Scholar 

  47. H. H. Wotiz and H. F. Martin, Studies in steroid metabolism: X. Gas-chromatographic analysis of estrogens, J. Biol. Chem. 236: 1312–1316 (1961).

    PubMed  CAS  Google Scholar 

  48. W. J. A. VandenHeuvel, J. Sjövall, and E. C. Horning, Gas-chromatographic behaviour of trifluoroacetoxy steroids, Biochim. Biophys. Acta 48: 596–599 (1961).

    Article  CAS  Google Scholar 

  49. R. B. Clayton, Gas liquid chromatography of sterol methyl ethers, Nature 190: 1071–1072 (1961).

    Article  CAS  Google Scholar 

  50. T. Luukkainen, W. J. A. VandenHeuvel, E. O. A. Haahti, and E. C. Horning, Gas-chromatographic behaviour of trimethylsilyl ethers of steroids, Biochim. Biophys. Acta 52: 599–601 (1961).

    Article  CAS  Google Scholar 

  51. B. S. Thomas, C. Earborn, and D. R. M. Walton, Preparation and gas chromatography of steroid chloromethyldimethylsilyl ethers, Chemical Commun. 408 (1966).

    Google Scholar 

  52. W. R. Supina, R. F. Kruppa, and R. S. Henly, Use of dimethylsilyl ether derivatives in gas chromatography, J. Am. Oil Chem. Soc. 44: 74–76 (1967).

    Article  CAS  Google Scholar 

  53. W. J. A. VandenHeuvel and E. C. Horning, A study of retention-time relationships in gas-chromatography in terms of the structure of steroids, Biochim. Biophys. Acta 64:416–429, (1962).

    Article  PubMed  CAS  Google Scholar 

  54. R. J. Hamilton, W. J. A. VandenHeuvel, and E. C. Horning, An extension of the steroid number concept to relationships between the structure of steroids and their gas-chromatographic retention times observed with selective phases, Biochim. Biophys. Acta 70: 679–687 (1963).

    Article  CAS  Google Scholar 

  55. E. C. Horning, W. J. A. VandenHeuvel, and B. G. Creech, Separation and determination of steroids by gas chromatography, in Methods of Biochemical Analysis (D. Glick, ed.), Vol. XI, pp. 69–147, Interscience, New York (1963).

    Google Scholar 

  56. H. H. Wotiz and S. J. Clark, Gas Chromatography in the Analysis of Steroid Hormones, Plenum Press, New York (1966).

    Google Scholar 

  57. Gas Liquid Chromatography of Steroids. Proceedings of a Symposium held at the University of Glasgow, April 4–6, 1966 ( J. K. Grant, ed.) Cambridge University Press (1967).

    Google Scholar 

  58. R. Fumagalli, Analytical Gas Chromatography of Cholesterol and Sterol Precursors, in press.

    Google Scholar 

  59. D. H. R. Barton and J. D. Cox, The application of the method of molecular rotation differences in steroids, Part VII. Olefinic unsaturation at the 8(9) position, J. Chemical Soc. 1949: 214–219.

    Google Scholar 

  60. I. D. Frantz, Jr., A. T. Sanghvi, and R. B. Clayton, Detection of a sterol with the probable structure Δ5,7,24cholestatrien-3ß-ol in the intestinal wall of guinea pigs treated with triparanol, J. Biol. Chem. 237: 3381–3383 (1962).

    PubMed  CAS  Google Scholar 

  61. I. D. Frantz,Jr., T. J. Scallen, A. N. Nelson, and G. J. Schroepfer, Δ7,24cholestadien-3ß-ol, a probable intermediate in cholesterol synthesis, J. Biol. Chem. 241: 3818–3821 (1966).

    PubMed  CAS  Google Scholar 

  62. R. Ryhage, Use of a mass spectrometer as a detector and analyzer for effluents emerging from high temperature gas liquid chromatography columns, Anal. Chem. 36: 759–764 (1964).

    CAS  Google Scholar 

  63. R. Ryhage and J. Sjövall, Direct mass-spectrometry of steroids in gas chromatography, Biochem. J., 92: 2P - 3P (1964).

    Google Scholar 

  64. E. Stenhagen, II. Massenspektrometrie. Jetziger Stand der Massenspektrometrie in der organischen Analyse, Z. Anal. Chem. 205: 109–124 (1964).

    Article  CAS  Google Scholar 

  65. J. T. Watson and K. Biemann, High resolution mass spectra of compounds emerging from a gas chromatograph, Anal. Chem. 36: 1135–1137 (1964).

    Google Scholar 

  66. S. S. Friedland, G. H. Lane, Jr., R. T. Longman, K. E. Train, and M. J. O’Neal, Jr., Mass spectra of steroids, Anal. Chem. 31: 169–174 (1959).

    CAS  Google Scholar 

  67. H. Budzikiewicz, C. Djerassi, and D. H. Williams, Structure Elucidation of Natural Products by Mass Spectrometry, Vol. II, Holden-Day, Inc., San Francisco (1964).

    Google Scholar 

  68. C. J. W. Brooks, W. A. Harland, and G. Steel, Squalene, 26-hydroxycholesterol and 7ketocholesterol in human atheromatous plaques, Biochim. Biophys Acta 125: 620–622 (1966).

    Article  CAS  Google Scholar 

  69. G. Galli and S. Maroni, Mass spectrometric investigations of some unsaturated sterols biosynthetically related to cholesterol, Steroids 10: 189–197 (1967).

    Article  PubMed  CAS  Google Scholar 

  70. R. B. Clayton and K. Bloch, Biological synthesis of lanosterol and agnosterol, J. Biol. Chem. 218: 305–318 (1956).

    PubMed  CAS  Google Scholar 

  71. F. Snyder and C. Piantadosi, Labeling and radiopurity of lipids, Advan. Lipid Res. 4: 257283 (1966).

    Google Scholar 

  72. L. Swell, Simultaneous determination of mass and radioactivity of labeled sterols and steroids by radiogaschromatography, Anal. Biochem. 16: 70–83, (1966).

    CAS  Google Scholar 

  73. A. Karmen, Measurement of carbon-14 and tritium in the effluent of a gas chromatography column, J. Am. Oil. Chem. Soc. 44: 18–25 (1967).

    Article  PubMed  CAS  Google Scholar 

  74. L. F. Fieser, Cholesterol and companions. III. Cholestanol, lathosterol and Chetone 104, J. Am. Chem. Soc. 75: 4395–4403 (1953).

    Article  CAS  Google Scholar 

  75. K. Nakanishi, B. K. Bhattacharyya, and L. F. Fieser, Cholesterols and companions. V. Microdetermination of Δ7 stenols, J. Am. Chem. Soc. 75: 4415–4417 (1953).

    Article  CAS  Google Scholar 

  76. H. Werbin, I. L. Chaikoff, and M. R. Imada, 5a-cholestan-3ß-ol: its distribution in tissues and its synthesis from cholesterol in the guinea pig, J. Biol. Chem. 237: 2072–2077 (1962).

    PubMed  CAS  Google Scholar 

  77. I. H. Page and E. Mueller, Notiz über das Vorkommen von Dihydrocholesterin in menschlichen Gehirn, Z. Physiol. Chem. 204: 13–14 (1932).

    Article  CAS  Google Scholar 

  78. R. Shoenheimer, H. Van Behring, and R. Hummel, Mitteilung: Untersuchung der Sterine aus verschiedenen Organen auf ihren Gehalt an gesättigten Sterinen, Z. Physiol. Chem. 192: 93–96, (1930).

    Google Scholar 

  79. I. H. Page and W. Menschick, Ober das Vorkommen von Ergosterin im menschlichen Gehirn, Biochem. Z. 231: 446–459 (1931).

    CAS  Google Scholar 

  80. E. M. Koch and F. C. Koch, Provitamin D potency of some sterol derivatives, J. Biol. Chem. 116: 757–768 (1936).

    CAS  Google Scholar 

  81. A. Ercoli and P. De Ruggieri, The constitution of cerebrosterol: a hydroxycholesterol isolated from horse brain, J. Am. Chem. Soc. 75: 3284 (1953).

    Article  CAS  Google Scholar 

  82. H. J. Nicholas, Cholesterol turnover in the central nervous system, J. Am. Oil Chem. Soc. 42: 1008–1012 (1965).

    Article  PubMed  CAS  Google Scholar 

  83. G. Brante, Studies on the lipids in the nervous system, with special reference to quantitative chemical determination and topical distribution, Acta Physiol. Scand. 18, Suppl. 63: 1–189 (1949).

    Google Scholar 

  84. J. Folch, J. Casals, A. Pope, J. A. Meath, F. N. LeBaron, and M. Lees, Chemistry of myelin development in The Biology of Myelin, (S. R. Korey, ed.), pp. 122–137, Harper & Bros., New York (1959).

    Google Scholar 

  85. Y. Kishimoto, W. E. Davies, and N. S. Radin, Developing rat brain: changes in cholesterol, galactolipids and the individual fatty acids of gangliosides and glycerophosphatides, J. Lipid Res. 6: 532–535 (1965).

    PubMed  CAS  Google Scholar 

  86. C. Galli and D. Re Cecconi, Lipid changes in rat brain during maturation, Lipids 2: 76–82 (1967).

    Article  PubMed  CAS  Google Scholar 

  87. J. Folch-Pi, in Biochemistry of the Developing Nervous System (H. Waelsch, ed.), pp. 121132, Academic Press, Inc., New York (1955).

    Google Scholar 

  88. P. Mandel and R. Bieth, La répartition des diverses fractions lipidiques au cours du développement du cerveau chez le rat, Bull. Soc. Chim. Biol. 33: 973–981 (1951).

    PubMed  CAS  Google Scholar 

  89. P. Mandel, R. Bieth, and R. Stoll, La repartition des diverses fractions lipidiques dans le cerveau de l’embryon de poulet durant la seconde partie de l’incubation, Compt. Rend. Soc. Biol. 143: 1224–1226 (1949).

    CAS  Google Scholar 

  90. W. T. Norton, personal communication.

    Google Scholar 

  91. W. A. Fish, J. E. Boyd, and W. M. Stokes, Metabolism of cholesterol in the chick embryo. III. Localization and turnover of desmosterol (24-dehydrocholesterol), J. Biol. Chem. 237: 334–337 (1962).

    PubMed  CAS  Google Scholar 

  92. D. Kritchevsky and W. L. Holmes, Occurrence of desmosterol in developing rat brain, Biochem. Biophys. Res. Comm. 7: 128–131 (1962).

    Article  CAS  Google Scholar 

  93. R. Fumagalli and R. Paoletti, The identification and significance of desmosterol in developing human and animal brain, Life Sci. 2: 291–295 (1963).

    Article  CAS  Google Scholar 

  94. R. Paoletti, R. Fumagalli, E. Grossi-Paoletti, and P. Paoletti, Studies on brain sterols in normal and pathological conditions, J. Am. Oil Chem. Soc. 42: 400–404 (1965).

    Article  PubMed  CAS  Google Scholar 

  95. T. J. Holstein, W. A. Fish, and W. M. Stokes, Pathway of cholesterol biosynthesis in the brain of the neonatal rat, J. Lipid Res. 7: 634–638 (1966).

    PubMed  CAS  Google Scholar 

  96. D. Kritchevsky, S. A. Tepper, N. W. Di Tullio and W. L. Holmes, Desmosterol in developing rat brain, J. Am. Oil Chem. Soc. 42: 1024–1028 (1965).

    Article  PubMed  CAS  Google Scholar 

  97. J. N. Cumings, in Cerebral Lipidoses ( J. N. Cumings and A. Lowenthal, eds.), pp. 112–121, Blackwell, Oxford (1957).

    Google Scholar 

  98. C. W. M. Adams and A. N. Davison, The form in which cholesterol occurs in the adult C.N.S., J. Neurochem. 5: 293–296 (1960).

    Article  PubMed  CAS  Google Scholar 

  99. F. N. LeBaron and J. Folch, The effect ofpH and salt concentration on aqueous extraction of brain proteins and lipoproteins, J. Neurochem. 4: 1–8 (1959).

    Article  PubMed  CAS  Google Scholar 

  100. P. Mandel and R. Bieth, Development biochimique du cerveau de l’embryon de poulet. II. les lipids, Bull. Soc. Chim. Biol. 32: 109–115 (1950).

    PubMed  Google Scholar 

  101. C. W. M. Adams and A. N. Davison, The occurrence of esterified cholesterol in the developing nervous systems, J. Neurochem. 4: 282–289 (1959).

    Article  PubMed  CAS  Google Scholar 

  102. A. C. Johnson, A. R. McNabb, and R. J. Rossiter, Lipids of normal brain, Biochem. J. 43: 573–577 (1948).

    CAS  Google Scholar 

  103. J. Tichy, Cholesterol esters in the white matter of adult human brain serum and cerebrospinal fluid, J. Neurochem. 14: 555–559 (1967).

    Article  PubMed  CAS  Google Scholar 

  104. R. Clarenburg, I. L. Chaikoff, and M. D. Morris, Incorporation of injected cholesterol into the myelinating brain of the 17-day-old rabbit, J. Neurochem. 10: 135–143 (1963).

    Article  PubMed  CAS  Google Scholar 

  105. D. Grafnetter, E. Grossi, and P. Morganti, Occurrence of sterol esters in the chicken brain during prenatal and postnatal development, J. Neurochem. 12: 145–149 (1965).

    Article  PubMed  CAS  Google Scholar 

  106. R. Fumagalli, D. Grafnetter, E. Grossi, and P. Morganti, Steroli liberi ed esterificati nel tessuto nervoso dell’embrione di pollo durante lo sviluppo con particolare riguardo al desmosterolo, Atti Accad. Med. Lomb. 18: 535–540 (1963).

    CAS  Google Scholar 

  107. A. C. Johnson, A. R. McNabb, and R. J. Rossiter, Concentration of lipids in the brain of infants and adults, Biochem. J. 44: 494–498 (1949).

    PubMed  CAS  Google Scholar 

  108. C. M. Plum and S. E. Hansen, Studies on multiple sclerosis, Acta Psych. Neurol. Scand. 35, Suppl. 141: 184–302 (1960).

    Google Scholar 

  109. E. Robins, K. M. Edik, and D. E. Smith, Distribution of lipids in the cerebellar cortex and its subjacent white matter, J. Biol. Chem. 220: 677–682 (1956).

    PubMed  CAS  Google Scholar 

  110. C. W. M. Adams, in Neurochemistry (K. A. Elliot, I. H. Page, and J. H. Quastel, eds.), pp. 85–112, Chas. C. Thomas, Springfield, Ill. (1962).

    Google Scholar 

  111. V. P. Whittaker, The isolation and characterization of acetylcholine containing particles from brain, Biochem. J. 72: 694–706 (1959).

    PubMed  CAS  Google Scholar 

  112. L. A. Autilio, W. T. Norton, and R. D. Terry, The preparation and some properties of purified myelin from the central nervous system, J. Neurochem. 11: 17–27 (1964).

    Article  PubMed  CAS  Google Scholar 

  113. M. E. Smith, in Advances in Lipid Research (R. Paoletti and D. Kritchevsky, eds.), Vol. 5, pp. 241–278, Academic Press, New York (1967).

    Google Scholar 

  114. M. J. Evans and J. B. Finean, The lipid composition of myelin from brain and peripheral nerve, J. Neurochem. 12: 729–734 (1965).

    Article  PubMed  CAS  Google Scholar 

  115. M. L. Curner, A. N. Davison, and N. A. Gregson, The chemical composition of vertebrate myelin and microsomes, J. Neurochem. 12: 469–481 (1965).

    Article  Google Scholar 

  116. J. Eichberg, V. P. Whittaker, and R. M. C. Dawson, Distribution of lipids in subcellular particles of guinea pig brain, Biochem. J. 92: 91–100 (1964).

    PubMed  CAS  Google Scholar 

  117. W. T. Norton and L. A. Autilio, The lipid composition of purified bovine brain myelin, J. Neurochem. 13: 213–222 (1966).

    Article  PubMed  CAS  Google Scholar 

  118. J.S. O’Brien and E. L. Sampson, Lipid composition of the normal human brain: gray matter, white matter and myelin, J. Lipid Res. 6:537–544(1965).

    Google Scholar 

  119. M. E. Smith, R. Fumagalli, and R. Paoletti, The occurrence of desmosterol in myelin of developing rats, Life Sci. 6: 1085–1091 (1967).

    Article  PubMed  CAS  Google Scholar 

  120. W. T. Norton, personal communication.

    Google Scholar 

  121. N. L..Banik and A. N. Davison, Desmosterol in rat brain myelin, J. Neurochem. 14: 594–596 (1967).

    Article  PubMed  CAS  Google Scholar 

  122. J. J. Kabara and G. T. Okita, Brain cholesterol: biosynthesis with selected precursors in vivo, J. Neurochem. 7: 298–304 (1961).

    Article  PubMed  CAS  Google Scholar 

  123. J. A. Olson, The biosynthesis of cholesterol, Ergeb. Phys. Chem. Exptl. Pharmak. 56: 173214 (1965).

    Article  CAS  Google Scholar 

  124. H. Moser and M. L. Karnovsky, Studies on the biosynthesis of glycolipides and other lipides of the brain, J. Biol. Chem. 234: 1990–1997 (1959).

    PubMed  CAS  Google Scholar 

  125. M. E. Smith, Lipid biosynthesis in the central nervous system in experimental allergic encephalomyelitis, J. Neurochem. 11: 29–37 (1964).

    Article  PubMed  CAS  Google Scholar 

  126. E. Grossi, P. Paoletti, and R. Paoletti, An analysis of brain cholesterol and fatty acid biosynthesis, Arch. Int. de Physiol. et de Biochimie 66: 564–572 (1965).

    Article  Google Scholar 

  127. P.Tavormina, M. A. Gibbs, and J. L. Huff, The utilization of ß-hydroxy-ß-methyl-δvalerolactone in cholesterol biosynthesis, J. Am. Chem. Soc. 78:4489–4499(1956).

    Article  Google Scholar 

  128. S. Garattini, R. Paoletti, and P. Paoletti, Lipid biosynthesis in vivo from acetate-1-C14 and 2-C14 and mevalonic 2-C14 acid, Arch. Biochem. Biophys. 84: 254–258 (1959).

    Article  Google Scholar 

  129. R. Fumagalli, E. Grossi, M. Poggi, P. Paoletti, and S. Garattini, Cholesterol synthesis in rat brain: differential incorporation of mevalonolactone-2-C14, Arch. Biochem. Biophys. 99: 529–533 (1962).

    Article  CAS  Google Scholar 

  130. H. J. Nicholas, Cholesterol: The metabolism of cholesterol in the central nervous system, J. Kansas Med. Soc. 62: 358–361 (1961).

    PubMed  CAS  Google Scholar 

  131. E. Grossi, P. Paoletti, and M. Poggi, The effect of insulin on brain cholesterol and fatty acid biosynthesis, World Neurol. 3: 209–215 (1962).

    PubMed  CAS  Google Scholar 

  132. S. R. Korey, ed., The Biology of Myelin, Harper and Row ( Hoeber ), New York (1959).

    Google Scholar 

  133. S. R. Korey and A. Stein, in Regional Neurochemistry (S. Kety and J. Elkes, eds.), pp. 175189, Pergamon Press, New York (1961).

    Google Scholar 

  134. J. J. Kabara in Advances in Lipid Research (R. Paoletti and D. Kritchevsky, eds.), Vol. V, pp. 279–327, Academic Press, New York (1967).

    Google Scholar 

  135. H. J. Nicholas and B. E. Thomas, The metabolism of cholesterol and fatty acids in the central nervous system, J. Neurochem. 4: 42–49 (1959).

    Article  PubMed  CAS  Google Scholar 

  136. B. W. Agranoff, H. Eggerer, V. Henning, and F. Lynen, Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase, J. Biol. Chem. 235: 326–332 (1960).

    PubMed  CAS  Google Scholar 

  137. E. Grossi-Paoletti, unpublished observations.

    Google Scholar 

  138. A. Eschenmoser, L. Ruzicka, O. Jeger, and D. Arigoni, Zur Kenntnis der Triterpene. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen, Heir. Chim. Acta 38: 1890–1904 (1955).

    Article  CAS  Google Scholar 

  139. E. J. Corey, W. E. Russey, and P. Ortiz de Montellano, 2,3-oxidosqualene, an intermediate in the biological synthesis of sterols from squalene, J. Am. Chem. Soc. 88: 4750–4751 (1966).

    Article  CAS  Google Scholar 

  140. E. E. Van Tamelen, J. P. Willet, R. B. Clayton, and K. E. Lord, Enzymic conversion of squalene 2,3-oxide to lanosterol and cholesterol, J. Am. Chem. Soc. 88: 4752–4754 (1966).

    Article  PubMed  Google Scholar 

  141. J. L. Gaylor, C. V. Delwicke, and A. C. Swindell, Enzymatic isomerization (Δ7–Δ48) of intermediates of sterol biosynthesis, Steroids 8: 353–363 (1966).

    Article  CAS  Google Scholar 

  142. L. Canonica, A. Fiecchi, M. Galli Kienle, A. Scala, G. Galli, E. Grossi-Paoletti, and R. Pao-letti, The biological conversion of 5a-cholest-8-en-3ß-ol to 5α-cholest-7-en-3ß-ol in the biosynthesis of cholesterol, Steroids 11: 287–298 (1968).

    Article  PubMed  CAS  Google Scholar 

  143. M. Akhtar, D. C. Wilton, and K. H. Munday, The obligatory intermediary of cholest-5,7diene system in the hepatic biosynthesis of cholesterol, Biochem. J. 101: 23c (1966).

    PubMed  CAS  Google Scholar 

  144. G. J. Schroepfer, Jr., Lee Wen-Lui, and R. Kammereck, in Proceedings of the 154th Meeting of the American Chemical Society, Chicago, Ill., Sept. 1967, 140C.

    Google Scholar 

  145. M. E. Dempsey, J. D. Seaton, G. J. Schroepfer, Jr., and R. W. Trockman, The intermediary role of Δ5,7-cholestadien-3ß-ol in cholesterol biosynthesis, J. Biol. Chem. 239: 1381–1387 (1964).

    PubMed  CAS  Google Scholar 

  146. G. J. Schroepfer, Jr., and I. D. Frantz, Jr., Conversion of Δ7-cholestenol-4-C14 and 7dehydrocholesterol-4-C14 to cholesterol, J. Biol. Chem. 236: 3137–3140 (1961).

    PubMed  CAS  Google Scholar 

  147. J. Avigan, D. Steinberg, M. J. Thompson, and E. Mosettig, The mechanism of action of Mer-29, Progr. Cardiovascular Diseases 2: 525–530 (1960).

    Article  CAS  Google Scholar 

  148. J. D. Johnston and K. Bloch, In vitro conversion of zymosterol and dihydrozymosterol to cholesterol, J. Am. Chem. Soc. 79:1145–1149 (1957).

    Article  CAS  Google Scholar 

  149. D. S. Goodman, J. Avigan, and D. Steinberg, Studies of cholesterol biosynthesis. V. The time course and pathway of the later stages of cholesterol biosynthesis in the liver of intact rats, J. Biol. Chem. 238: 1287–1293 (1963).

    CAS  Google Scholar 

  150. H. Waelsch, W. H. Sperry, and V.A. Stoyanoff, Lipid metabolism in brain during myelination, J. Biol. Chem. 135: 297–302 (1940).

    CAS  Google Scholar 

  151. H. Waelsch, W. H. Sperry, and V. A. Stoyanoff, The influence of growth and myelination on the disposition and metabolism of lipids in the brain, J. Biol. Chem. 140: 885–897 (1950).

    Google Scholar 

  152. P. A. Srere, I. L. Chaikoff, S. S. Treitman, and L. S. Burstein, The extrahepatic synthesis of cholesterol, J. Biol. Chem. 182: 629–632 (1950).

    CAS  Google Scholar 

  153. R. Rossiter in Metabolism of the Nervous System (D. Richter, ed.), pp. 355–380, Pergamon Press, New York (1956).

    Google Scholar 

  154. D. L. Azarnoff, G. L. Curran, and W. P. Williamson, Incorporation of acetate-1-C14into cholesterol by human brain tumors, Fed. Proceedings 16: 148 (1957).

    Google Scholar 

  155. P. McMillan, G. L. Douglas, and R. A. Mortensen, Incorporation of acetate 1-C14 and pyruvate-2-C14 into brain cholesterol in the intact rat, Proc. Soc. Exptl. Biol. Med. 96: 738–740 (1957).

    CAS  Google Scholar 

  156. H. J. Nicholas, Biosynthesis of cholesterol in the central nervous system, Fed. Proceedings 16:324(1957).

    Google Scholar 

  157. J. Dobbing, The blood-brain barrier, Physiol. Rev. 41: 130–188 (1961).

    CAS  Google Scholar 

  158. H. J. Nicholas and R. T. Aexel, Biosynthesis of cholesterol in cell-free extracts of adult rat brain, Fed. Proceedings 26: 342 (1967).

    Google Scholar 

  159. E. Grossi, P. Paoletti, and R. Paoletti, The in vitro and in vivo effects of Chlorpromazine on brain lipid synthesis, J. Neurochem. 6: 73–78 (1960).

    Article  PubMed  CAS  Google Scholar 

  160. R. Fumagalli, E. Grossi, and P. Paoletti, The effect of imipramine and desmethylimipramine on lipid biosynthesis in brain and liver, J. Neurochem. 10: 213–217 (1963).

    Article  PubMed  CAS  Google Scholar 

  161. J. J. Kabara, Brain cholesterol. VIII. Effect of methylphenidate (Ritalin) on the incorporation of specifically labeled acetate, Proc. Soc. Exptl. Biol. Med. 118: 905–908 (1965).

    CAS  Google Scholar 

  162. J. J. Kabara and C. A. Riegel, Brain cholesterol. IX. Effect of methylphenidate on the incorporation of specifically labeled glucose, Biochem. Pharmacol. 14: 1928–1930 (1965).

    CAS  Google Scholar 

  163. G. T. Alexander and R. B. Alexander, Inhibition of cholesterol synthesis in vivo by a convulsant, Metrazol, Proc. Soc. Exptl. Biol. Med. 115: 229 (1964).

    CAS  Google Scholar 

  164. G. T. Alexander and R. B. Alexander, Effect of Metrazol on isolated mammalian cells. II. Inhibition of synthesis of cholesterol, Biochemistry 1: 783–788 (1962).

    Article  PubMed  CAS  Google Scholar 

  165. R. A. Field and L. C. Adams, Insulin response of peripheral nerve. H. Effects on lipid metabolism, Biochim. Biophys. Acta 106: 474–479 (1965).

    Article  CAS  Google Scholar 

  166. E. Grossi-Paoletti and R. Fumagalli, Effetto del Triton sulla sintesi del colesterolo e degli acidi grassi del tessuto cerebrale di ratto durante lo sviluppo, Atti Accad. Med. Lomb. 19: 377–380 (1964).

    CAS  Google Scholar 

  167. E. Grossi and P. Paoletti, Effetto della radiazioni e di farmaci radioprotettori e radio-sensibilizzanti sul metabolismo lipidico, Giorn. It. Chemiot. 6–9: 225–229 (1962).

    Google Scholar 

  168. A. V. Chobanian and W. Hollander, Tissue distribution of cholesterol and 24-dehydrocholesterol during chronic triparanol therapy, J. Lipid Res. 6: 37–42 (1965).

    PubMed  CAS  Google Scholar 

  169. R. Fumagalli and R. Niemiro, Effect of 20–25 diazacholesterol and triparanol on sterols particularly desmosterol in rat brain and peripheral tissues, Life Sci. 3: 555–561 (1964).

    Article  PubMed  CAS  Google Scholar 

  170. R. Fumagalli, E. Grossi-Paoletti, P. Paoletti, and R. Paoletti, Lipids in brain tumors. II. Effect of triparanol and 20–25 diazacholesterol on sterol composition in experimental and human brain tumors, J. Neurochem. 13: 1005–1010 (1966).

    Article  PubMed  CAS  Google Scholar 

  171. T. J. Scallen, R. M. Candie, and G. J. Schroepfer, Jr., Inhibition by Triparanol of cholesterol formation in the brain of the newborn mouse, J. Neurochem. 9: 99–103 (1961).

    Article  Google Scholar 

  172. T. G. Scott and V. C. Barber, An enzyme histochemical and biochemical study on the effect of an inhibitor of cholesterol synthesis on myelinating mouse brain, J. Neurochem. 11: 423–429 (1964).

    Article  PubMed  CAS  Google Scholar 

  173. D. Dvornik, M. Kraml, J. Dubuc, M. Givner, and R. Gaudry, A novel mode of inhibition of cholesterol biosynthesis, J. Am. Chem. Soc. 85: 3309 (1963).

    Article  CAS  Google Scholar 

  174. R. Fumagalli, R. Niemiro, and R. Paoletti, Investigation on the biogenetic reaction sequence of cholesterol in rat tissues through inhibition with AY-9944, J. Am. Oil Chem. Soc. 42: 1018–1023 (1965).

    Article  PubMed  CAS  Google Scholar 

  175. M. L. Givner and D. Dvornik, Agents affecting lipid metabolism. XV. Biochemical studies with the cholesterol biosynthesis inhibitor AY-9944 in young and mature rats, Biochem. Pharmacol. 14: 611–619 (1965).

    CAS  Google Scholar 

  176. R. Fumagalli, E. Grossi-Paoletti, and D. Grafnetter, unpublished observations.

    Google Scholar 

  177. J. Dobbing and J. B. Kersley, The influence of early nutrition on brain cholesterol accumulation during growth, J. Physiol. (London) 166: 34P (1963).

    Google Scholar 

  178. B. S. Platt, R. J. C. Steward, and S. N. Payne, Protein caloric deficiency and the nervous system in Proc. Intern. Neurochem. Conf. (G. B. Ansell, ed.), pp. 91–92, Oxford (1965).

    Google Scholar 

  179. J. J. Kabara, Brain cholesterol. XI. A review of biosynthesis in adult mice. J. Am. Oil Chem. Soc. 42: 1003–1008 (1965).

    Article  PubMed  CAS  Google Scholar 

  180. M. E. Smith, The effect of fasting on lipid metabolism of the central nervous system of the rat, J. Neurochem. 10: 531–536 (1963).

    Article  PubMed  CAS  Google Scholar 

  181. A. C. Johnson, A. R. McNabb, and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration, Biochem. J. 45: 500–505 (1949).

    CAS  Google Scholar 

  182. D. Kline, W. L. Magee, E. T. Pritchard, and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration. VII. Labeling of phospholipid and cholesterol from carboxy-14C acetate, J. Neurochem. 3: 52–58 (1958).

    Article  PubMed  CAS  Google Scholar 

  183. G. Simon, Cholesterol ester in degenerating nerve: origin of cholesterol moiety, Lipids 1: 369–370 (1966).

    Article  PubMed  CAS  Google Scholar 

  184. W. L. Magee, J. F. Berry, M. Magee, and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration X. In vitro incorporation of radioactive inorganic phosphate into phosphatides and acid soluble phosphorus compounds, J. Neurochem. 3:333–340 (1958).

    Article  Google Scholar 

  185. J. N. Cumings, Lipid chemistry of the brain in demyelinating diseases, Brain 78: 554–563 (1955).

    Article  PubMed  CAS  Google Scholar 

  186. A. N. Davison and M. Wajda, Cerebral lipids in multiple sclerosis, J. Neurochem. 9: 427432 (1962).

    Article  PubMed  CAS  Google Scholar 

  187. C. G. Honegger, Über die dünnschichtchromotographie von Lipiden. 1. Mitteilung. Untersuchungen von Gehirngewebe Multiple-Sklerose-Kranker and Normaler, Hely. Chim. Acta 45: 281–289 (1962).

    Article  CAS  Google Scholar 

  188. C. W. M. Adams in Neurohistochemistry, Elsevier, Amsterdam, pp. 442–444 (1965).

    Google Scholar 

  189. J. N. Cumings in Modern Scientific Aspects of Neurology (J. N. Cumings, ed.), Arnold, London, p. 330 (1960).

    Google Scholar 

  190. W. T. Norton and S. Poduslo, Metachromatic leucodistrophy: Chemically abnormal myelin and cerebral biopsy studies of three siblings, Abstracts Intern. Neurochem. Conf, Oxford, England, p. 82 (1965).

    Google Scholar 

  191. J. N. Cumings, Metachromatic leucodistrophy: some biochemical observations, Proc. London Conf. Sci. Study of Mental Deficiency, Vol. 2, pp. 449–453, May and Baker, London (1962).

    Google Scholar 

  192. J. N. Cumings in Mechanism of Demyelination (A. S. Rose and C. M. Pearson, eds.), pp. 58–71, McGraw-Hill, New York (1963).

    Google Scholar 

  193. M. Mossakowski, G. Mathieson, and J. N. Cumings, On the relation of metachromatic leucodystrophy and amaurotic idiocy, Brain 84: 585–604 (1961).

    Article  PubMed  CAS  Google Scholar 

  194. W. T. Norton, S. Poduslo, and K. Suzuki, Chemical findings including abnormal myelin and an abnormal ganglioside pattern in a case of subacute sclerosing leucoencephalitis, Abstracts Intern. Neurochem. Conf., Oxford, England, p. 83 (1965).

    Google Scholar 

  195. A. Allegranza, R. Fumagalli, and P. Paoletti, unpublished data.

    Google Scholar 

  196. R. M. Norman, H. Urich, A. H. Tingey, and R. A. Goodboy, Tay-Sachs’ disease with visceral involvement and its relationship to Niemann-Pick’s disease, J. Path. Bact. 78: 409–421 (1959).

    Article  PubMed  CAS  Google Scholar 

  197. R. M. Norman, A. H. Tingey, and M. C. Fowler, The subacute form of Niemann-Pick’s disease, Proc. Vth Intern. Congr. Neuropath. (P. Luethy, ed.), pp. 143–148, Excerpta Medica, Amsterdam (1965).

    Google Scholar 

  198. R. M. Norman, R. M. Forrester and A. H. Tingey, The juvenile form of Niemann-Pick’s disease, Arch. Dis. Childhood 42: 91–96 (1967).

    Article  CAS  Google Scholar 

  199. S. J. Thannhauser, The lipidoses: diseases of the cellular lipid metabolism, Oxford Medicine, Oxford, (1949).

    Google Scholar 

  200. R. Ohman, Chemical pathology of congenital amaurotic idiocy, Abstracts Intern. Neurochem. Conf., Oxford, p. 84 (1965).

    Google Scholar 

  201. S. Gatt and E. R. Berman, Studies on brain lipids in Tay-Sachs’ disease. III. Incorporation tritiated water into brain lipids, J. Neurochem. 10: 73–77 (1963).

    Article  PubMed  CAS  Google Scholar 

  202. K. Gopal, E. Grossi, P. Paoletti, and M. Usardi, Lipid composition of human intracranial tumors: a biochemical study, Acta Neurochir. 11: 333–347 (1963).

    Article  PubMed  CAS  Google Scholar 

  203. D. E. Slagel, J. C. Dittmer, and C. B. Wilson, Lipid composition of human glial tumor and adjacent brain, J. Neurochem. 14: 789–798 (1967).

    Article  PubMed  CAS  Google Scholar 

  204. P. Paoletti, A. H. Soloway, B. Whitman, and J. R. Messer, Lipid biosynthesis from labeled precursors in an experimental brain tumor bearing mice, Neurochir. 9: 12–18 (1966).

    CAS  Google Scholar 

  205. R. Fumagalli, E. Grossi, P. Paoletti, and R. Paoletti, Studies on lipids in brain tumours.I. Occurrence and significance of sterol precursors of cholesterol in human brain tumours,J. Neurochem. 11: 561–565 (1964).

    Article  PubMed  CAS  Google Scholar 

  206. R. Fumagalli, R. Paoletti, A. Allegranza, and P. Paoletti, Sterol composition of human and animal spontaneous and experimental brain tumours, Proc. Vth Intern. Congr. Neuropath. (F. Luthy and A. Bischoff, eds.), pp. 455–458, Excerpta Medica, Amsterdam (1965).

    Google Scholar 

  207. D. L. Azarnoff, G. L. Curran, and W. P. Williamson, Incorporation of acetate-1-C14 into cholesterol by human intracranial tumor in vitro, J. Nat. Cancer Inst. 21: 1109–1115 (1958).

    PubMed  CAS  Google Scholar 

  208. F. A. Vandenheuvel, R. Fumagalli, R. Paoletti, and P. Paoletti, A possible biochemical procedure for the diagnosis of human brain tumours, Life Sci. 6: 439–444 (1967).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Paoletti, R., Grossi-Paoletti, E., Fumagalli, R. (1969). Sterols. In: Lajtha, A. (eds) Chemical Architecture of the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7154-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7154-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7156-8

  • Online ISBN: 978-1-4615-7154-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics