Skip to main content

Laser Sources for Confocal Microscopy

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

In this chapter we will describe the characteristic properties of a number of lasers commonly used in fluorescence microscopy. We will concentrate on the characteristics of lasers in relation to their use as an illumination source. Lasers have a number of unique properties compared to other sources emitting electro-magnetic radiation, such as arc lamps, which make them an almost ideal light source for use in confocal microscopy. These properties are:

  • high degree of monochromaticity

  • small divergence

  • high brightness

  • high degree of spatial and temporal coherence

  • plane polarized emission (for many types)

  • a Gaussian beam profile (can be obtained by special optics)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhav R.S., January, 1986. Data sheet 714. Sum frequency mixing and second harmonic generation. Quantum Technology, Inc., Lake Mary, FL (407–323–7750).

    Google Scholar 

  • Alcala, J. R., E. Gratton, and D. M. Jameson. A multifrequency phase fluorometer using the harmonic content of a mode-locked laser. Anal. Instrum. 14, 225–250 (1985).

    Article  CAS  Google Scholar 

  • Arecchi, F.T., and Schultz-Dubois, E. O., 1972. Laser Handbook, Vol. 1, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Baer, T. M., June 1986. Diode Laser Pumping of Solid State Lasers. Laser Focus/Electro Optics. 82–92

    Google Scholar 

  • Bass, M. and Stitch, M. L., 1985. Laser Handbook, Vol. 5, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Bertolotti, M., 1983. Masers and Lasers. An historical Approach. Adam Hilger Ltd., Bristol.

    Google Scholar 

  • Birmingham, J. J., and P. B. Garland. Laser spectroscopic measurements of triplet-state lifetimes in both time and frequency domains. SPIE 909, 370–376 in Time-resolved laser spectroscopy in biochemistry, SPIE, Los Angeles (1988).

    Google Scholar 

  • Bloom A. L., 1968. Gas lasers. John Wiley and Sons, New York.

    Google Scholar 

  • Borst, W. L., S. Gangopadhyay, and M. W. Pleil. Fast analog technique for determining fluorescence lifetimes of multicomponent materials by pulsed laser. SPIE 743, 15–23 in Fluorescence detection, SPIE, Los Angeles (1987).

    Google Scholar 

  • Brown, D. C, 1981. High-Peak-Power Nd-Glass Laser Systems, Vol. 25, in Springer Series in Optical Sciences, Springer-Verlag Berlin.

    Google Scholar 

  • Burgin, C. D., 1988. A guide for eyewear for protection from laser light. LLL-TB-87, LLNL, P.O. Box 808, Livermore, CA.

    Google Scholar 

  • Cundall, R. B., and R. E. Dale. Time-resolved fluorescence spectroscopy in biochemistry and biology. NATO ASI Series A: Life sciences, Vol. 69, Plenum Press, New York, (1983).

    Google Scholar 

  • Demtröder, W., 1982. Laser spectroscopy. Basic concepts and instrumentation. Vol. 5, in Springer Series in Chemical Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Dunning, F.B., May 1978. Tunable-untraviolet generation by sum-frequency mixing. Laser Focus Magazine, 72–76.

    Google Scholar 

  • Driscoll W. G., and Vaughan W., 1977. Handbook of Optics. McGraw-Hill Book Co., New York.

    Google Scholar 

  • Eden J. G., April 1988. UV and VUV lasers: Prospects and Applications. Optics News, 14–27.

    Google Scholar 

  • Feddersen, B. M. vandeVen, and E. Gratton. Parallel wavelength ac-quisition of fluorescence decay with picosecond resolution using an optical multichannel analyzer. Biophys. J. 55, 190a, (1989a).

    Google Scholar 

  • Feddersen, B., D. W. Piston, and E. Gratton. Digital parallel acquisition in frequency domain fluorimetry. Rev. Sci. Instrum. 60, 2929–2936 (1989b).

    Article  Google Scholar 

  • Gibson J., November 1988. Laser Cooling Water. The key to Improved Reliability, Photonics Spectra, 117–124.

    Google Scholar 

  • Gibson, J., April 1989. Laser water cooling loops deserve attention. Laser Focus World, 123–129.

    Google Scholar 

  • Hammerling, P., Budgor, A. B. and Pinto, A. 1985. Tunable Solid-State Lasers, in Proceedings of the First International Conference, La Jolla, Ca, June 13–15, 1984. Springer-Verlag, Berlin.

    Google Scholar 

  • Hecht, E. and Zajac A., 1977. Optics, 2nd Ed., Addison-Wesley Publishing Co., Reading, PA.

    Google Scholar 

  • Herrmann J. and Wilhelmi, B. 1987. Lasers for Ultrashort Light Pulses. North-Holland Amsterdam.

    Google Scholar 

  • Huth B. G. and Kuizenga D., October 1987. Green light from doubled Nd-YAG lasers. Lasers & Optronics, 59–61.

    Google Scholar 

  • Jovin, T. M., D. J. Arndt-Jovin, M. Robert-Nicoud, T. Schormann, G. Marriott, and R. M. Clegg. Luminescence digital imaging microscopy. Biophys. J. 55, 432a (1989).

    Article  Google Scholar 

  • Kaiser, W., 1988. Ultrashort laser pulses and applications, Vol. 60, in Topics in Applied Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Kaminskii, A. A., 1981. Laser Crystals Their Physics and Properties, (translation) ed. Ivey H.F. Vol. 14, in Springer Series in Optical Sciences, Springer-Verlag Berlin.

    Google Scholar 

  • Keating, S. M., T. G. Wensell, T. Meyer, and L. Stryer. Nanosecond fluorescence and emission anisotropy kinetics of fura-2 in single cells. Biophys. J. 55, 518a (1989).

    Google Scholar 

  • Kinosita, K., I. Ashikawa, M. Hibino, M. Shigemori, H. Yoshimura, H. Itoh, K. Nagayama, and A. Ikegami. Submicrosecond imaging under a pulsed-laser fluorescence microscope. SPIE 909, 271–277 in Time-resolved laser spectroscopy in biochemistry, SPIE, Los Angeles (1988).

    Google Scholar 

  • Knutson, J. R. Fluorescence detection: schemes to combine speed, sensitivity and spatial resolution. SPIE 909, 51–60 in Time-resolved laser spectroscopy in biochemistry, SPIE, Los Angeles (1988).

    Google Scholar 

  • Kusumi, A., A. Tsuji, M. Murata, Y. Sako, A. C. Yoshizawa, T. Hay-akawa, and S-I Ohnishi. Development of a time-resolved micro-fluorimeter with a synchroscan streak camera and its application to studies of cell membranes. SPIE 909, 350–351 in Time-resolved laser spectroscopy in biochemistry, SPIE, Los Angeles (1988).

    Google Scholar 

  • Lakowicz, J. R. Principles of fluorescence spectroscopy (1983). Plenum Press, New York (1983).

    Google Scholar 

  • Lewis R. R., Naylor G. A., and Kearsley A. J., April 1988. Copper Vapor Lasers Reach High Power. Laser Focus/Electro Optics, 92–96.

    Google Scholar 

  • Lin J. T. and Chen C, November 1987. Choosing a Non-linear Crystal. Lasers & Optronics, 59–63.

    Google Scholar 

  • Littlechild J. and Mossier D., November 1988. Knowledge od Arc-Lamp Aging and Lifetime Effects Can Help to Avoid Unpleasant Surprises. Laser Focus/Electro Optics, 67–76.

    Google Scholar 

  • Miller P. and Hoyt C, June 1986. Turning Down Laser Noise with Power Stabilizers. Photonics Spectra, 129–134.

    Google Scholar 

  • Mollenauer L.F. and White J. C, 1987. Tunable Lasers, Vol. 59, in Topics in Applied Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Muckenheim W., Austin L. and Basting D., June 1988. The pulsed dye Lasen Today’s Technology, Today’s Uses. Photonics Spectra, 79–84.

    Google Scholar 

  • O’Connor, D. V, and D. Phillips. Time-correlated single photon counting. Academic Press, New York, (1984).

    Google Scholar 

  • Peuse B., November 1988. Active Stabilization Of Ion Laser Resonators. Active Stabilization offers Advantages in Several Areas. Lasers & Optronics, 61–65

    Google Scholar 

  • Rapp E. W., September 1988. Design Your Cooling System For Good Laser Performance, Laser Focus/Electro Optics, 65–70.

    Google Scholar 

  • Rhodes Ch. K., 1983. Excimer Lasers, 2nd ed., Vol. 30, in Topics in Applied Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Rockwell Associates Inc., Cincinnati, Ohio 1983. Laser Safety Training Manual, Sixth edition.

    Google Scholar 

  • Rockwell, R. J. Jr., May 1986. An introduction to exposure hazards and the evaluation of nominal hazard zones. Lasers & Applications, 97–103.

    Google Scholar 

  • Sliney D. H. April 1986. Laser Safety. The newest face on an old standard. Photonics Spectra, 83–96.

    Google Scholar 

  • Sliney, D. and Wolbarsht, M., 1980. Safety with lasers and other optical sources. A comprehensive handbook. Plenum Press, New York.

    Google Scholar 

  • Smith B., September 1986. Lamps for Pumping Solid-state Lasers: Performance and Optimization. Laser Focus/Electro Optics, 58–73.

    Google Scholar 

  • Soileau, M. J., November 1987. Laser-Induced Damage, Photonics Spectra, 109–114.

    Google Scholar 

  • Stitch, M. L., 1979. Laser Handbook, Vol. 3, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Tebo, A. R., August 1988. Scientists develop Useful Optical Materials. Laser Focus/Electro Optics, 103–110.

    Google Scholar 

  • Weast, R.C., and Tuve, G.L., 1971. Handbook of lasers with selected data on optical technology, CRC Press. The Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  • Wilson, D. A., G. H. Vickers, and G. M. Hieftje. Novel techniques for the determination of fluorescence lifetimes. Anal. Instrum. 14, 483–502 (1985).

    Article  CAS  Google Scholar 

  • Winburn, D.C., 1985. Practical laser safety. Marcel Dekker Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Gratton, E., VandeVen, M.J. (1990). Laser Sources for Confocal Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7133-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7133-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7135-3

  • Online ISBN: 978-1-4615-7133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics