Skip to main content

Foundations of Confocal Scanned Imaging in Light Microscopy

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Seldom has the introduction of a new instrument generated as instant an excitement among biologists as the laser-scanning confocal microscope. With the new microscope one can slice incredibly clean, thin optical sections out of thick fluorescent specimens; view specimens in planes running parallel to the line of sight; penetrate deep into light-scattering tissues; gain impressive 3-dimensional views at very high resolution; and improve the precision of microphotometry.

The preparation of this article was supported in part by NIH grant R37 GM 31617–07 and NSF grant DCB 8518672

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe E (1873): Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Schultzes Archiv f. mikr. Anat. 9, 413–468.

    Article  Google Scholar 

  • Abbe E (1884): Note on the proper definition of the amplifying power of a lens or a lens-system. J. Roy. Microsc. Soc. (2) 4, 348–351.

    Article  Google Scholar 

  • Agard DA, Sedat JW (1983): Three-dimensional architecture of a po-lytene nucleus. Nature 302, 676–681.

    Article  PubMed  CAS  Google Scholar 

  • Agard DA, Hiraoka Y, Shaw P, Sedat JW (1989): Fluorescence microscopy in three dimensions. In: Fluorescence Microscopy of Living Cells in Culture, Part B (Taylor DL, Wang Y-L, eds), Methods in Cell Biology, Vol. 30, pp. 353–377. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Allen RD, Travis JL, Allen NS, Yilmaz H (1981a): Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. Cell Motil. 1, 275–289.

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Allen NS, Travis JL (1981b): Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1, 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Allen RD (1985): New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu. Rev. Bio-phys. Biophysical Chem. 14, 265–290.

    Article  CAS  Google Scholar 

  • Amos WB, White JG, Fordham M (1987): Use of confocal imaging in the study of biological structures. Appl. Opt. 26, 3239–3243.

    Article  PubMed  CAS  Google Scholar 

  • Àslund N, Carlsson K, Liljeborg A, Majlöf L (1983): PHOIBOS, a microscope scanner designed for micro-fluorometric applications, using laser induced fluorescence. In: Proc. of 3rd Scand. Conf. on Image Analysis, p. 338. Studentliteratur Lund.

    Google Scholar 

  • Åslund N, Liljeborg A, Forsgren P-O, Wahlsten S (1987): Three-dimensional digital microscopy using the PHOIBOS scanner. Scanning 9, 227–235.

    Article  Google Scholar 

  • Baxes GA (1984): Digital Image Processing: A Practical Primer. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Berek M (1927): Grundlagen der Tiefenwahrnehmung im Mikroskop. Marburg Sitzungs Berichte 62, 189–223.

    Google Scholar 

  • Born M, Wolf E (1980): Principles of Optics (6th ed.). Pergamon Press, Oxford, England.

    Google Scholar 

  • Boyde A (1985a): The tandem scanning reflected light microscope. Part 2—Pre-micro ‘84 applications at UCL. Proc. Roy. Micros. Soc. 20(3), 131–139.

    Google Scholar 

  • Boyde A (1985b): Stereoscopic images in confocal (tandem scanning) microscopy. Science 230, 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  • Boyde A (1987): Colour-coded stereo images from the tandem scanning reflected light microscope (TSRLM). J. Microscopy 146(2), 137–142.

    Article  CAS  Google Scholar 

  • Brakenhoff GJ, Blom P, Barends P (1979): Confocal scanning light microscopy with high aperture immersion lenses. J. Microscopy 117, 219–232.

    Article  Google Scholar 

  • Brakenhoff GJ, van der Voort HTM, van Spronsen EA, Linnemans WAM, Nanninga N (1985): Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317, 748–749.

    Article  PubMed  CAS  Google Scholar 

  • Brakenhoff GJ, van der Voort HTM, van Spronsen EA, Nanninga N (1986): Three- dimensional imaging by confocal scanning fluorescence microscopy. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine (Somlyo A, ed), Vol. 483, pp. 405–414. Ann. N.Y. Acad. Sci., New York.

    Google Scholar 

  • Brakenhoff GJ, van Spronsen EA, van der Voort HTM, Nanninga N (1989): Three- dimensional confocal fluorescence microscopy. In: Fluorescence Microscopy of Living Cells in Culture, Part B (Taylor DL, Wang Y-L, eds), Methods in Cell Biology, Vol. 30, pp. 379–398. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Bright GR, Fisher GW, Rogowska J, Taylor DL (1989): Fluorescence ratio imaging microscopy. In: Fluorescence Microscopy of Living Cells in Culture, Part B (Taylor DL, Wang Y-L, eds), Methods in Cell Biology, Vol. 30, pp. 157–192. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Cagnet M, Françon, M, Thrierr, JC (1962): Atlas of Optical Phenomena. Springer Verlag, Berlin.

    Google Scholar 

  • Carlsson K, Danielsson P, Lenz R, Liljeborg A, Majlöf L, Àslund N (1985). Three-dimensional microscopy using a confocal laser scanning microscope. Opt. Lett. 10, 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Castleman KR (1979): Digital Image Processing. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Castleman KR (1987): Spatial and photometric resolution and calibration requirements for cell image analysis instruments. Appl. Opt. 26, 3338–3342.

    Article  PubMed  CAS  Google Scholar 

  • Cox IJ, Sheppard CJR (1983): Scanning optical microscope incorporating a digital framestore and microcomputer. Appl. Opt. 22, 1474–1478.

    Article  PubMed  CAS  Google Scholar 

  • Cox IJ, Sheppard CJR (1986): Information capacity and resolution in an optical system. J. Opt. Soc. Am. 3, 1152–1158.

    Article  Google Scholar 

  • Davidovits P, Egger MD (1971): Scanning laser microscope for biological investigations. Appl. Opt. 10, 1615–1619.

    Article  PubMed  CAS  Google Scholar 

  • Davidovits P, Egger MD (1972): U.S. Patent #3,643,015, Scanning Optical Microscope.

    Google Scholar 

  • Egger MD (1989): The development of confocal microscopy. Trends in Neurosci. 12, 11.

    Article  Google Scholar 

  • Egger MD, Petráň M (1967): New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157, 305–307.

    Article  PubMed  CAS  Google Scholar 

  • Ellis GW (1966): Holomicrography: Transformation of image during reconstruction a posteriori. Science 154, 1195–1196.

    Article  PubMed  CAS  Google Scholar 

  • Ellis GW (1978): Advances in visualization of mitosis in vivo. In: Cell Reproduction: In Honor of Daniel Mazia (Dirksen E, Prescott D, Fox CF, eds), pp. 465–476. Academic Press, New York.

    Google Scholar 

  • Ellis GW (1979): A fiber-optic phase-randomizer for microscope illumination by laser. J. Cell Biol. 83, 303a.

    Google Scholar 

  • Ellis GW (1985): Microscope illuminator with fiber optic source integrator. J. Cell Biol. 101, 83a.

    Article  Google Scholar 

  • Ellis GW (1988): Scanned aperture light microscopy. In: Proceedings of the 46th Annual Meeting of EMSA, pp. 48–49. San Francisco Press, Inc., San Francisco.

    Google Scholar 

  • Fay FS, Fogarty KE, Coggins JM (1985): Analysis of molecular distribution in single cells using a digital imaging microscope. In: Optical Methods in Cell Physiology (De Weer P, Salzberg BM, eds). Wiley, New York.

    Google Scholar 

  • Flory LE (1951): The television microscope. Cold Spring Harbor Symp. Quant. Biol. 16, 505–509.

    Article  CAS  Google Scholar 

  • Françon M (1961): Progress in Microscopy. Row, Peterson, Evanston, Illinois.

    Google Scholar 

  • Freed JJ, Engle JL (1962): Development of the vibrating-mirror flying spot microscope for ultraviolet spectrophotometry. Ann. N.Y. Acad. Sci. 97, 412–448.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs H, Pizer SM, Heinz ER, Bloomberg SH, Tsai L-C, Strickland DC (1982): Design and image editing with a space-filling 3-D display based on a standard raster graphics system. Proc. Soc. Photo. Opt. Instrum. Eng. 367, 117–127.

    Google Scholar 

  • Gabor D (1948): A new microscope principle. Nature 161, 777–778.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein S (1989). In: Digitized Video Microscopy (Herman B, Jacobson K, eds). Alan R. Liss, New York.

    Google Scholar 

  • Gonzales RC, Wintz P (1987): Digital Image Processing (2nd ed.). Addison-Wesley Publishing Co., Reading, Massachusetts.

    Google Scholar 

  • Hamilton DK, Wilson T (1984): Two-dimensional phase imaging in the scanning optical microscope. Appl. Opt. 23(2), 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Hansen GL (1969): Introduction to Solid-State Television Systems: Color and Black and White. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Hard R, Zeh R, Allen RD (1977): Phase-randomized laser illumination for microscopy. J. Cell Sci. 23, 335–343.

    PubMed  CAS  Google Scholar 

  • Harris JL (1964): Diffraction and resolving power. J. Opt. Soc. Am. 54, 931–936.

    Article  Google Scholar 

  • Hecht E (1987): Optics (2nd ed.). Addison-Wesley Publishing Co., Reading, Massachusetts.

    Google Scholar 

  • Hoffman R, Gross L (1975): Modulation contrast microscopy. Appl. Opt. 14, 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins HH (1951): The concept of partial coherence in optics. Proc. Roy. Soc. A 208, 263.

    Article  Google Scholar 

  • Ingelstam E (1956): Different forms of optical information and some interrelations between them. Problem in Contemporary Optics, Istituto Nazionale di Ottica, Arcetri-Firenze, 128–143.

    Google Scholar 

  • Inoué S (1981): Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J. Cell Biol. 89, 346–356.

    Article  PubMed  Google Scholar 

  • Inoué S (1986): Video Microscopy. Plenum Press, New York.

    Google Scholar 

  • Inoué S (1988): Progress in video microscopy. Cell Motil. Cytoskel. 10, 13–17.

    Article  Google Scholar 

  • Inoué S (1989a): Imaging of unresolved objects, supperresolution, and precision of distance measurement, with video microscopy. In: Fluorescence Microscopy of Living Cells in Culture, Part B (Taylor DL, Wang Y-L, eds), Methods in Cell Biology, Vol. 30, pp. 85–112. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Inoué S (1989b): Video enhancement and image processing in light microscope. Part I—Video microscopy. Part II—Digital image processing. American Laboratory, April, 52–70.

    Google Scholar 

  • Inoué S (1989c): Whither video microscopy? Towards 4D imaging at the highest resolution of the light microscope. In: Digitized Video Microscopy (Herman B, Jacobson K, eds). Alan R. Liss, New York.

    Google Scholar 

  • Inoué S, Inoué TD (1986): Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine (Somlyo A, ed), Vol. 483, pp. 392–404. Ann. N.Y. Acad. Sci., New York.

    Google Scholar 

  • Koester CJ (1980): Scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology. Appl. Opt. 19, 1749–1757.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Inoué S (1959): Diffraction images in the polarizing microscope. J. Opt. Soc. Am. 49, 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Leith EN, Upatnieks J (1963): Wavefront reconstruction with continuous-tone objects. J. Opt. Soc. Am. 53, 1377–1381.

    Article  Google Scholar 

  • Leith EN, Upatnieks J (1964): Wavefront reconstruction with diffused illumination and three-dimensional objects. J. Opt. Soc. Am. 54, 1295–1301.

    Article  Google Scholar 

  • Lewin R (1985): New horizons for light microscopy. Science 230, 1258–1262.

    Article  PubMed  CAS  Google Scholar 

  • Linfoot EH, Wolf E (1953): Diffraction images in systems with an annular aperture. Proc. Phys. Soc. B 66, 145–149.

    Article  Google Scholar 

  • Linfoot EH, Wolf E (1956): Phase distribution near focus in an aberration-free diffraction image. Proc. Phys. Soc. B 69, 823–832.

    Article  Google Scholar 

  • McCarthy JJ, Walker JS (1988): Scanning confocal optical microscopy. EMSA Bulletin 18(2), 75–79.

    Google Scholar 

  • Minsky M (1957): U.S. Patent #3013467, Microscopy Apparatus.

    Google Scholar 

  • Minsky M (1988): Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138.

    Article  Google Scholar 

  • Montgomery PO, Roberts F, Bonner W (1956): The flying-spot monochromatic ultra-violet television microscope. Nature 177, 1172.

    Article  PubMed  CAS  Google Scholar 

  • Nipkow P (1884): German Patent #30,105.

    Google Scholar 

  • Nomarski G (1955): Microinterféromètre différentiel à ondes polarisées. J. Phys. Radium 16, S9-S13.

    Google Scholar 

  • Petrân M, Hadravsky M, Egger D, Galambos R (1968): Tandem-scanning reflected-light microscope. J. Opt. Soc. Am. 58, 661–664.

    Article  Google Scholar 

  • Quate CF (1980): Microwaves, acoustic and scanning microscopy. In: Scanned Image Microscopy (Ash EA, ed), pp. 23–55. Academic Press, New York.

    Google Scholar 

  • Sharnoff M, Brehm L, Henry R (1986): Dynamic structures through microdifferential holography. Biophys. J. 49, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Sheppard CJR, Choudhury A (1977): Image formation in the scanning microscope. Optica 24, 1051.

    Article  Google Scholar 

  • Sheppard CJR, Gannaway JN, Walsh D, Wilson T (1978): Scanning Optical Microscope for the Inspection of Electronic Devices. Microcircuit Engineering Conference, Cambridge.

    Google Scholar 

  • Sher LD, Barry CD (1985): The use of an oscillating mirror for three-dimensional displays. In: New Methodologies in Studies of Protein Configuration (Wu TT, ed). Van Nostrand-Reinhold, Princeton, New Jersey.

    Google Scholar 

  • Smith LW, Osterberg H (1961): Diffraction images of circular self-radiant disks. J. Opt. Soc. Am. 51, 412–414.

    Article  Google Scholar 

  • Streibl N (1985): Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 2(2), 121–127.

    Article  Google Scholar 

  • Suzuki T, Hirokawa Y (1986): Development of a real-time scanning laser microscope for biological use. Appl. Opt. 25, 4115–4121.

    Article  PubMed  CAS  Google Scholar 

  • Tanasugarn L, McNeil P, Reynolds GT, Taylor DL (1984): Microspec-trofluorometry by digital image processing: Measurement of cytoplasmic pH. J. Cell Biol. 89, 717–724.

    Article  Google Scholar 

  • Tolardo di Francia G (1955): Resolving power and information. J. Opt. Soc. Amer. 45, 497–501.

    Article  Google Scholar 

  • Tsien RY (1989): Fluorescent indicators of ion concentration. In: Fluorescence Microscopy of Living Cells in Culture, Part B (Taylor DL, Wang Y-L, eds), Methods in Cell Biology, Vol. 30, pp. 127–156. Academic Press, San Diego.

    Chapter  Google Scholar 

  • White JG, Amos WB, Fordham M (1987): An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105, 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Wijnaendts van Resandt RW, Marsman HJB, Kaplan R, Davoust J, Stelzer EHK, Strickler R (1985): Optical fluorescence microscopy in three dimensions: Microtomoscopy. J. Microscopy 138, 29–34.

    Article  Google Scholar 

  • Wilke V, Gödecke U, Seidel P (1983): Laser-scan-mikroskop. Laser and Optoelecktron. 15(2), 93–101.

    Google Scholar 

  • Wilson T (1985): Scanning optical microscopy. Scanning 7, 79–87.

    Article  Google Scholar 

  • Wilson T, Sheppard C (1984): Theory and Practice of Scanning Optical Microscopy. Academic Press, London.

    Google Scholar 

  • Wilson T, Gannaway JN, Johnson P (1980): A scanning optical microscope for the inspection of semiconductor materials and devices. J. Microscopy 118, 390–314.

    Article  Google Scholar 

  • Xiao GQ, Kino GS (1987): A real-time confocal scanning optical microscope. Proc. SPIE, Vol. 809, Scanning Imaging Technology (Wilson T, Balk L, eds.), 107–113.

    Google Scholar 

  • Young JZ, Roberts F (1951): A flying-spot microscope. Nature 167, 231.

    Article  PubMed  CAS  Google Scholar 

  • Zernicke VF (1935): Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Z. Tech. Phys. 16, 454–457.

    Google Scholar 

  • Zworykin VK (1934): The iconoscope—a modern version of the electric eye. Proc. IRE 22, 16–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Inoué, S. (1990). Foundations of Confocal Scanned Imaging in Light Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7133-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7133-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7135-3

  • Online ISBN: 978-1-4615-7133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics