Skip to main content

Role of Defects in the Nucleation of Whiskers Growing from Vapor

  • Chapter
Growth of Crystals
  • 309 Accesses

Abstract

The role of substrate surface defects in the nucleation of whiskers in the process of vapor deposition is a topic of long standing in the literature. In fact, the beginning was the diffusion-dislocation model of Sears [1] which was an attempt to relate the nucleation and one-dimensional growth of whiskers to the non-disappearing step created by a screw dislocation on a substrate surface. For some time this model was widely accepted because of a number of experimental data which supported the presence of defects in whiskers either directly or indirectly. However, the model had weaknesses which until recently had to be tolerated. The inconsistency of this model was demonstrated by Wagner [2] who substituted the diffusion- dislocation model by the diffusion-droplet model based on the vapor-liquid-solid (VLS) mechanism of whisker growth [3]. Wagner pointed to a good deal of conclusive evidence supporting the VLS mechanism. Many other facts could be mentioned, all pointing to the important role played by impurities in the nucleation of whiskers. Thus, in the reduction of iron halides the iron whiskers grow on magnesium segregations [4]. Selective nucleation of whiskers of iron oxides was observed on the surface of Armco iron doped by bismuth deposited through a mask [5]; the whiskers nucleated and grew in druses only at the impurity sites. The VLS growth of copper whiskers (reduction of halides by hydrogen), with drops of molten salt at the whisker tip, has been observed directly by in situ electron microscopy [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. G. W. Sears. Mercury whiskers. Acta Met., 1, 457–459 (1953).

    Article  Google Scholar 

  2. E. I. Givargizov. Vapor Growth of Whiskers and Platelets. Nauka, Moscow (in Russian) (1977).

    Google Scholar 

  3. R. Wagner. Vapor-Liquid-Solid mechanism of crystal growth. In: Whisker Technology, ed. A. P. Levitt. Wiley, New York, 147–219 (1970).

    Google Scholar 

  4. J. V. Laukonis. The influence of impurities on the nucleation and growth of iron whiskers. Met. Sei. Rev. Met., 62, 179–186 (1965).

    Google Scholar 

  5. R. F. W. Pease, and R. A. Plok. Growth of FeO whiskers. Trans. Met. Soc. AIME, 233, 1949–1954 (1965).

    Google Scholar 

  6. O. Nittono, H. Hasegawa, and S. Nagakura. Growth mechanism of copper whiskers. J. Cryst. Growth, 42, 175–182 (1977).

    Article  ADS  Google Scholar 

  7. A. Oberlin and M. Endo. Filamentary growth of carbon by benzene decomposition. J. Cryst. Growth, 32, 335–349 (1976).

    Article  ADS  Google Scholar 

  8. S. Kittaka and K. Kishi. Growth of Cu whiskers from cupric oxide. Jap. J. Appl. Phys., 4, 661–666 (1965).

    Article  ADS  Google Scholar 

  9. S. Kittaka and T. Koneko. Growth of a large number of iron whiskers by the reduction of halides. Jap. J. Appl. Phys., 8, 860–869 (1969).

    Article  ADS  Google Scholar 

  10. W. W. Webb. Dislocation mechanisms in the growth of palladium whisker crystals. J. Appl. Phys., 36, 214–221 (1965).

    Article  ADS  Google Scholar 

  11. D. A. Frank-Kamenetsky. Diffusion and Heat Transfer in Chemical Kinetics. Nauka, Moscow (in Russian) (1967).

    Google Scholar 

  12. F. Okuyama. Vapor-growth of tungsten whiskers. J. Appl. Phys., 45, 4239–4241 (1974).

    Article  ADS  Google Scholar 

  13. E. Schonherr. Photographic observation of the growth of GaP-needles. J. Cryst. Growth, 9, 346–350 (1971).

    Article  ADS  Google Scholar 

  14. A. A. Nosov, T. A. Poshekhonova, and P. V. Poshekhonov. Mechanism of gold whiskers growth. Radiotekhnika i Elektronika, 18, 1993–1994 (in Russian) (1973).

    Google Scholar 

  15. V. A. Shmelev. Diamond whiskers, Khimiya i Zhlzn’, 5, 15 (in Russian) (1976).

    Google Scholar 

  16. S. Simov, V. Gantcheva, and P. Kamadjiev. Study of the morphology of CdTe whiskers by scanning electron microscope. J. Cryst. Growth, 32, 133–136 (1976).

    Article  ADS  Google Scholar 

  17. S. Motojima, T. Wakamatsu, Y. Takahashi, and K. Sugiyama. Crystal growth and some properties of titanium monophosphide. J. Electrochem. Soc., 123, 290–295 (1976).

    Article  Google Scholar 

  18. S. A. Ammer and V. S. Postnikov. Whiskers. Voronezh Polytechnical Inst, Publ. House, Voronezh (1974).

    Google Scholar 

  19. V. N. Yerofeyev, V. I. Nikitenko, V. P. Polovinkina, and E. V. Suvorov. Specific features of X-ray diffraction contrast and geometry of slip of dislocation half-loops in silicon. Kristallografiya, 16, 190–196 (1971).

    Google Scholar 

  20. V. N. Rozhansky, S. Z. Bokshtein, T. N. Bulygina, M. P. Nazarova, and L L. Svetlov. Investigation of dislocation microplasticity in sapphire crystals by etching and electron microscopy. In: Whiskers and Nonferromagnetic Films. Voronezh Polytechnical Inst. Publishing House, Voronezh, part 1, 122–129 (1970).

    Google Scholar 

  21. S. Mendelson. Growth pips and whiskers in epitaxially grown silicon. J. Appl. Phys., 36, 2525–2534 (1965).

    Article  ADS  Google Scholar 

  22. N. Holonyak, D. C. Jillson, and S. F. Bevacqua. Silicon, arsenic, whiskers, and tunnel diodes. In: Metallurgy of Elemental and Compound Semiconductors. New York- London 81–92 (1961).

    Google Scholar 

  23. J. Hirth and G. Pound. Condensation and Evaporation. Nucleation and Growth Kinetics. Pergamon Press (1963).

    Google Scholar 

  24. E. Kaldis. Principles of vapor growth of single crystals. In: Crystal Growth. Theory and Techniques. Vol. 1, ed. C. H. L. Goodman, Plenum Press, 49–191 (1974).

    Google Scholar 

  25. A. A. Chernov. Statistical kinetics of crystallization. Vestnik AN SSSR, No. 11, 60–67 (1968).

    Google Scholar 

  26. D. Turnbull. Phase changes. Solid State Phys., 3, 225–232 (1956).

    Article  Google Scholar 

  27. B. V. Derjaguin. Film Growth. Dokl. AN SSSR, 51, 357–361.

    Google Scholar 

  28. V. F. Dorfman. Vapor Deposition Micrometallurgy of semiconductors. Metallurgy, Moscow, (1974).

    Google Scholar 

  29. N. A. Kolobov and M. M. Samokhvalov. Diffusion and Oxidation of Semiconductors. Metallurgy, Moscow (1975).

    Google Scholar 

  30. J. J. Pankove. The effect of impurities on the growth of crystals. J. Appl. Phys., 28, 1054–1059 (1957).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Consultants Bureau, New York

About this chapter

Cite this chapter

Ammer, S.A., Tatarenkov, A.F. (1986). Role of Defects in the Nucleation of Whiskers Growing from Vapor. In: Givargizov, E.I. (eds) Growth of Crystals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7119-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7119-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7121-6

  • Online ISBN: 978-1-4615-7119-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics