Skip to main content

Numerical Analysis of Heat and Mass Transfer in the Growth of Large Single Crystals from the Melt

  • Chapter
Growth of Crystals

Abstract

Semiconductor single crystals, which nowadays are grown in ever increasing quantities to meet industrial demand, must be highly perfect structurally and contain minimum amounts of macroscopic and microscopic inhomogeneities. Analyses of structure and properties of semiconductor materials as functions of growth conditions have been carried out mainly by experimental methods. A new approach based on mathematical simulation is now becoming important. The present review will be devoted to this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. N. A. Avdonin. Supercooling for growth front motion limited by the heat transfer rate. In: Growth of Crystals, 11, Consultants Bureau, New York, 274–277 (1979).

    Google Scholar 

  2. E. Billig. Some defects in crystals grown from melt. Proc. Roy. Soc. A, 235, 37–55 (1956).

    Article  ADS  Google Scholar 

  3. A. A. Uglov. Temperature field of a single crystal in conditions of partial screening. Izv. AN SSSR, Ser. Metallurgiya i Gomoye Delo, 4, 139–145 (in Russian) (1964).

    Google Scholar 

  4. G. P. Boikov and V. A. Kuchin. On the temperature field in the growing crystal. Izv.Vyssh. Uchebn. Zavedenii, Fizika, 2 15–23 (in Russian) (1959).

    Google Scholar 

  5. D. A. Burton, R. S. Prim, and W. P. Slichter. Distribution of impurities in crystals grown from the melt. J. Chem. Phys., 21, 1987–1991 (1953).

    Article  ADS  Google Scholar 

  6. W. R. Wilcox. Heat and mass transfer in the process of crystallization. In: Fractional Solidification. New York. Marcel Dekker, 1, 47–111 (1967).

    Google Scholar 

  7. G. P. Ivantsov. “Diffusional” supercooling in the process of crystallization of a binary melt. Dokl AN SSSR, 8, 179–181 (in Russian) (1951).

    Google Scholar 

  8. N. A. Avdonin. Description of solidification in binary systems taking account of bulk crystallization kinetics. In: Problems in Crystallization Theory. Latvian Univ. Publishing House, Riga, 2, 56–75 (in Russian) (1974).

    Google Scholar 

  9. V. T. Borisov, B. Ya. Lyubov, and D. E. Temkin. On kinetics of solidification in a metal ingot at different temperature conditions on its surface. Dokl. AN SSSR, 104, 223–226 (in Russian) (1955).

    Google Scholar 

  10. V. I. Dobrovolskaya, B. Ya. Martuzan, E. N. Martuzan, and D. G. Ratnikov. Temperature fields of floating zone melting calculated on the basis of inductor operation and surface profile of floating zone. Fiz. i Khim. Obrab. Materialov, 6, 42–46 (in Russian) (1973).

    Google Scholar 

  11. O. A. Oleinik. On one method of solving the general Stefan equation. Dokl. AN SSSR, 135, 1054–1057 (in Russian) (1960).

    MathSciNet  Google Scholar 

  12. N. A. Avdonin, M. F. Globin, V. A. Smirnov, and V. E. Shniger. Analysis of thermal conditions in the growth of gallium arsenide ingots by uniaxial crystallization. Fiz. iKhim. Obrab. Materialov, 5, 50–55 (in Russian) (1971).

    Google Scholar 

  13. B. Ya. Martuzan. Investigation of thermal effects in growth of single crystals. Thesis, Latv. Univ., Riga (in Russian) (1975).

    Google Scholar 

  14. B. M. Budak, N. L. Goldman, A. T. Yegorova, and A. B. Uspensky. A method of straightening crystallization interface for solving multidimensional Stefan-type problems. In: Numerical Calculation Methods and Programming, Moscow Univ. Publishing House, Moscow, 103–108 (in Russian) (1967).

    Google Scholar 

  15. N. A. Avdonin, M. V. Koyalo, and A. I. Pogodin. Analysis of supercooling in the growth of dislocation-free single crystals. In: Vth USSR Conference on Crystal Growth, Tbilisi. Abstracts Inst, of Cybernetics of AN GSSR, Tbilisi, 1, 56–57 (in Russian) (1977).

    Google Scholar 

  16. W. R. Wilcox and R. L. Duty. Macroscopic interface shape during solidification. HeatTransf., Trans. ASME,C, 88, No. 45 (1965).

    Article  Google Scholar 

  17. Yu. F. Shchelkin. Determination of shape of liquid column in Czochralski growth of single crystals with free melt surface. Fiz. i Khim. Obrab. Materialov, 3, 29–33 (in Russian) (1971).

    Google Scholar 

  18. Yu. F. Shchelkin. On the effect of heat exchange at the interface on the shape of crystallization interface in the Czochralski growth of single crystals. Fiz. i Khim. Obrab. Materialov, 4, 36–42 (in Russian) (1971).

    Google Scholar 

  19. Yu. F. Shchelkin, V. A. Smirnov, I. V. Starshinova, and A. A. Kholodovskaya. Temperature field in the crystal and the melt at nonlinear boundary conditions. In: Physico-Chemical Methods in Semiconductor Materials Research. Metallurgiya, Moscow, 29–42 (Giredmet Proceedings, 44 (in Russian) (1974).

    Google Scholar 

  20. M. G. Mirvidsky, V. A. Smirnov, I. V. Starshinova, and Yu. F. Shchelkin. On the analysis of thermal conditions in the Czochralski growth of single crystals. Izv. AN SSSR, Ser.Khim., 40, 1444–1451 (in Russian) (1976).

    Google Scholar 

  21. N. Kobayashi and T. Arizumi. The numerical analyses of the solid-liquid interface shapes during crystal growth by the Czochralski method. Jap. J. Appl. Phys. 9, 361–367 (1970).

    Article  ADS  Google Scholar 

  22. N. Kobayashi and T. Arisumi. The numerical analyses of the solid-liquid interface shapes during crystal growth by the Czochralski method. Part II. Effects of the crucible rotation. Jap. J. Appl. Phys., 9, 1255–1259 (1970).

    Article  ADS  Google Scholar 

  23. T. Arizumi and N. Kobayashi. Theoretical studies of the temperature distribution in a crystal being grown by the Czochralski method. J. Cryst. Growth, 13/14, 615–618 (1972).

    Article  ADS  Google Scholar 

  24. C. E. Chang and W. R. Wilcox. Inhomogeneities due to thermocapillary flow in floating zone melting. J. Cryst. Growth, 28, 8–12 (1975).

    Article  ADS  Google Scholar 

  25. A. J. Gosman, W. M. Pun, A. K. Runchel, D. E. B. Spalding, and M. Wolfstein. Heat and Mass Transfer in Recirculating Flows. Academic Press, London-New York, (1969).

    Google Scholar 

  26. V. L. Gryaznov and V. I. Polezhayev. An analysis of several different procedures and approximations of boundary conditions for numerical solution of thermal convection equations. Preprint of the Institute of Problems in Mechanics, AN SSSR, No. 4, Moscow (in Russian) (1974).

    Google Scholar 

  27. I. A. Remizov, I. V. Starshinova, and Yu. F. Shchelkin. Analysis of melt flow in the Czochralski growth of single crystals. In: Vth USSR Conference on Crystal Growth, Tbilisi. Abstracts, Inst, of Cybernetics of AN GSSR, 2, 173–176 (in Russian) (1977).

    Google Scholar 

  28. N. A. Kravchenko, A. S. Kuznetsov, B. Ya. Martuzan, and N. L. Ulanova. Calculation of heating and transfer of gas in epitaxial growth, taking into account rotation of support and temperature dependence of coefficients. In: Applied Problems of Theoretical and Mathematical Physics. Latvian Univ. Publishing House, Riga, 42–51 (in Russian) (1977).

    Google Scholar 

  29. V. L. Gryaznov and V. I. Polezhayev. Numerical solution of the nonstationary Navier-Stokes equations for the turbulent mode of natural convection. Preprint of the Institute of Problems in Mechanics, AN SSSR, No.81, Moscow, (in Russian) (1977).

    Google Scholar 

  30. S. S. Vakrameyev. Calculation of thermal stress in crystals grown from the melt. In: Problems in Crystallization Theory. Latvian Univ. Publishing House, Riga, 2, 101–122 (in Russian) (1975).

    Google Scholar 

  31. S. S. Vakhrameyev, V. V. Osvensky, and V. A. Smirnov. Relation between dislocation structure of a single crystal and the thermal stress field calculated by taking into account the radial and axial variation of ingot temperature during growth from the melt. In: IVth USSR Conference on Crystal Growth, Yerevan, AN ArmSSR Publishing House, Yerevan, 2, part 2, 81–82 (in Russian) (1972).

    Google Scholar 

  32. S. S. Vakhrameyev, M. G. MiPvidsky, V. A. Smirnov, and Yu. F. Shchelkin. An analysis of temperature and thermal stress fields in crystal growth from the melt. In: Growth and Doping of Semiconductor Crystals and Films. Nauka, Novosibirsk, part 1, 162–168 (in Russian) (1977).

    Google Scholar 

  33. V. B. Osvensky, S. S. Shifrin, and M. G. Mipvidsky. Multiplication of dislocations in semiconductor crystals at high temperatures. Izv. AN SSSR, Ser. Fiz., 37, 2357–2361 (in Russian) (1973).

    Google Scholar 

  34. S. S. Vakhrameyev, V. B. Osvensky, and S. S. Shifrin. Calculation of dislocation density distribution on the basis of thermal stress fields in real semiconductor single crystals. In: Vth USSR Conference on Crystal Growth, Tbilisi. Abstracts, Inst, of Cybernetics, an GSSR Publishing House, Tbilisi, 2, 230–231 (in Russian) (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Consultants Bureau, New York

About this chapter

Cite this chapter

Avdonin, N.A., Smirnov, V.A. (1986). Numerical Analysis of Heat and Mass Transfer in the Growth of Large Single Crystals from the Melt. In: Givargizov, E.I. (eds) Growth of Crystals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7119-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7119-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7121-6

  • Online ISBN: 978-1-4615-7119-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics