Skip to main content

Relative Static Positioning with the Global Positioning System: Basic Technical Considerations

  • Conference paper
Global Positioning System: An Overview

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 102))

Abstract

We give an overview of some of the important everyday-problems of using the Global Positioning System (GPS) for relative positioning in networks of small to medium size (let us say from 5×5×2 km to 100×100×2 km). We assume that the surveys are performed with single- and dual-frequency receivers. We allow for different receiver types and we assume that at least some of the dual frequency instruments are of C/A-code type (recovering the L2-phase using some squaring technique). The questions we address are the following: (1) What linear combination should be used for a special problem type (e.g., for preprocessing, ambiguity resolution, final solutions)? (2) How are mathematical correlations handled correctly in the general case; are we ready to process upcoming events with 50–100 simultaneously operating receivers in a correct way? (3) What is the optimum way of using “basic” atmosphere information (surface meteorological data, use of dual frequency data for single frequency receivers working in the same area)? (4) What is the state of the art of combining receivers of different type? (5) If we are interested in moderate accuracies only: how long do we have to stay on a survey point to get a satisfactory answer. Or, more generally, how to perform a kinematic survey using the methods of static positioning?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, T., Westfall, B., Eschenbach, R., and Hyatt, R. (1988). Status of dual frequency GPS development at Trimble Navigation, Lecture Notes in Earth Sciences, 19, Springer Verlag.

    Google Scholar 

  • Beutler, G., Davidson, D.A., Langley, R., Santerre, R., Vanicek, P., and Wells, D.E. (1984). Some theoretical and practical aspects of geodetic positioning using carrier phase difference observations of GPS satellites. Mitteilungen der Satelliten-Beobachtungsstation Zimmerwald, 14 and Department of Surveying Engineering, Technical Report, 109, University of New Brunswick, Fredericton, Canada.

    Google Scholar 

  • Beutler, G., Gurtner, W., Bauersima, I., and Rothacher, M. (1986). Efficient computation of the inverse of the covariance matrix of simultaneous GPS carrier phase difference observations, Manuscripta Geodaetica, 11, 249–255.

    Google Scholar 

  • Beutler, G., Bauersima, L, Gurtner, W., Rothacher, M., and Schildknecht, T. (1987). Evaluation of the Alaska global positioning system campaign with the Bernese software, J. Geophys. Res., 92, 1295–1303.

    Article  Google Scholar 

  • Beutler, G., Bauersima, I., Gurtner, W., Rothacher, M., Schildknecht, T., and Geiger, A. (1988a). Atmospheric refraction and other important biases in GPS carrier phase observations. Monograph 12, School of Surveying, University of New South Wales, Australia.

    Google Scholar 

  • Beutler, G., Gurtner, W., Hugentobler, U., Rothacher, M., Schildknecht, T., and Wild, U. (1988b). Ionosphere and GPS processing techniques, 1988 Chapman Conference on the Use of GPS for Geodynamics, Ft. Lauderdale, USA.

    Google Scholar 

  • Beutler, G., Bauersima, I., Botton, S., Gurtner, W., Rothacher, M., and Schildknecht, T. (1989). Accuracy and biases in the geodetic application of the global positioning system, Manuscripta Geodaetica, 14, 28–35.

    Google Scholar 

  • Blewitt, G., Melbourne, W.G., Bertiger, W.I., Dixon, R.H., Kroger, P.M., Lichten, S.M., Meehan, R.K., Neilan, R.E., Skrumeda, L.L., Thornton, C.L., Wu, S.C., and Young, L.E. (1988). GPS geodesy with centimeter accuracy, Lecture Notes in Earth Sciences, 19, Springer Verlag, 30–40.

    Article  Google Scholar 

  • Bock, Y., Abbot, R.I., Counselman, C.C., Gourevitch, S.A., King, R.W., and Paradis, A.R. (1984). Geodetic accuracy of the Macrometer Model V-1000, Bulletin Géodésique, 58, 211–221.

    Article  Google Scholar 

  • Bock, Y., Gourevitch, S.A., Counselman, C.C., King, R.W., and Abbot, R.I. (1986). Interferometric analysis of GPS phase observations, Manuscripta Geodaetica, 11, 282–288.

    Google Scholar 

  • Campbell, J., Cloppenburg, H., and Lohmar, F.-J. (1984). Estimating the ionospheric refraction effect on interferometric GPS measurements, International Symposium on Space Techniques for Geodynamics, Sopron, Hungary, 196–206.

    Google Scholar 

  • Delikaraoglou, D. (1989). On the stochastic modeling of GPS ionospheric delays, Manuscripta Geodaetica, 14, 100–109.

    Google Scholar 

  • Frei, E., and Beutler, G. (1989). Some considerations concerning an adaptive, optimized technique to resolve the initial phase ambiguities for static and kinematic GPS surveying techniques, Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 671–686.

    Google Scholar 

  • Geiger, A. (1988). Einfluss und bestimmung der Variabilität des phasenzentrums von GPS-antennen, Mitteilung, 43, Institut für Geodäsie und Photogrammetrie, ETH Zürich.

    Google Scholar 

  • Georgiadou, Y., Kleusberg, A. (1988). On the effect of ionospheric delay on geodetic relative positioning, Manuscripta Geodaetica, 13, 1–8.

    Google Scholar 

  • Goad, C.C., and Remondi, B.W. (1984). Initial relative positioning results using the global positioning system, Bulletin Géodésique, 58, 193–210.

    Article  Google Scholar 

  • Goad, C.C. (1985). Precise relative position determination using global positioning system carrier phase measurements in a nondifference mode, First International Symposium on Precise Positioning with the Global Positioning System, Rockville, 347–356.

    Google Scholar 

  • Goad, C.C., and Müller, A. (1988). An automated procedure for generating an optimum set of independent double difference observables using global positioning system carrier phase measurements, Manuscripta Geodaetica, 13, 365–369.

    Google Scholar 

  • Gurtner, W., Beutler, G., and Rothacher, M. (1989a). Combination of GPS observations made with different receiver types, Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 362–374.

    Google Scholar 

  • Gurtner, W., Beutler, G., Botton, S., Rothacher, M., Geiger, A., Kahle, H.-G., Schneider, D., and Wiget, A. (1989b). The use of GPS in mountainous areas, Manuscripta Geodaetica, 14, 53–60.

    Google Scholar 

  • Gurtner, W., Mader, G., and MacArther, D. (1989c). A common exchange format for GPS data, GPS Bulletin, 2, No. 3, Commission VIII, International Coordination of Space Techniques for Geodesy and Geodynamics (CSTG), and Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 920–931.

    Google Scholar 

  • Heroux, P., and Kleusberg, A. (1989). GPS precise relative positioning and ionosphere in auroral regions, Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 475–486.

    Google Scholar 

  • Hopfield, H.S. (1969). Tropospheric effect on electromagnetically measured range: Prediction from surface weather data, Radio Science, 6, 357–367.

    Article  Google Scholar 

  • Kahmen, H. (1978). Elektronische Messverfahren in der Geodäsie, Wichmann, Karlsruhe.

    Google Scholar 

  • Kroger, P.M., Thornton, CL., Davidson, J.M., Stephens, S.A., and Beckman, B.C. (1985). Sensitivity of GPS Caribbean baseline performance to the location of a southerly fiducial station, First International Symposium on Precise Positioning with the Global Positioning System, Rockville, USA, 447–456.

    Google Scholar 

  • Leitinger, R., and Putz, E. (1988). Ionospheric refraction errors and observables, Monograph 12, School of Surveying, University of New South Wales, Australia.

    Google Scholar 

  • Lichten, S.M., and Border, J.S. (1987). Strategies for high-precision global positioning system orbit determination, J. Geophys. Res., 92, 12751–12762.

    Article  Google Scholar 

  • Melbourne, W.G. (1985). The case for ranging in GPS based geodetic systems, First International Symposium on Precise Positioning with the Global Positioning System, Rockville, USA, 373–386.

    Google Scholar 

  • Remondi, B.W. (1984). Using the global positioning system (GPS) phase observable for relative geodesy: Modeling, processing, and results. Ph.D. Thesis, University of Texas at Austin.

    Google Scholar 

  • Remondi, B.W. (1985). Global positioning system carrier phase: Description and use, Bulletin Géodésique, 59, 361–377.

    Article  Google Scholar 

  • Röcken, C., Meertens, C.M. (1989). GPS antenna and receiver tests: Multipath reduction and mixed receiver baselines, Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 375–385.

    Google Scholar 

  • Rothacher, M., Beutler, G., Gurtner, W., Geiger, A., Kahle, H.-G., and Schneider, D. (1986). The Swiss 1985 GPS campaign, Fourth International Geodetic Symposium on Satellite Positioning, Austin, Texas, 979–991.

    Google Scholar 

  • Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, The Use of Artificial Satellites for Geodesy, Geophysical Monograph 15, American Geophysical Union, Washington, D.C., 247–251.

    Google Scholar 

  • Santerre, R. (1989). GPS satellite sky distribution: Impact on the propagation of some important errors in precise relative positioning, Ph.D. Thesis, Dept. of Surveying Engineering, University of New Brunswick.

    Google Scholar 

  • Schaffrin, B., and Bock, Y. (1988). A unified scheme for processing GPS dual-band phase observations, Bulletin Géodésique, 67, 142–160.

    Article  Google Scholar 

  • Spilker, J. J. (1980). GPS signal structure and performance characteristics, Journal of the Institute of Navigation (U.S.), 25, 121–146.

    Google Scholar 

  • Traili, D.M., Dixon, R.H. and Stephens, S.A. (1988). Effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the global positioning system, J. Geophys. Res., 93, 6545–6557.

    Article  Google Scholar 

  • Tranquilla, J.M. (1986). Multipath and imaging problems in GPS receiver antennas, Fourth International Geodetic Symposium on Satellite Positioning, Austin, Texas, 557–571.

    Google Scholar 

  • Wells, D.E. (1974). Doppler satellite control, Department of Surveying Engineering Technical Report, 29, University of New Brunswick, Fredericton, Canada.

    Google Scholar 

  • Wübbena, G. (1985). Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements, First International Symposium on Precise Positioning with the Global Positioning System, Rockville, USA, 403–412.

    Google Scholar 

  • Wübbena, G. (1988). GPS carrier phases and clock modeling, Lecture Notes in Earth Sciences, 19, Springer Verlag, 381–392.

    Google Scholar 

  • Wild, U., Beutler, G., Gurtner, W., Rothacher, M. (1989). Estimating the ionosphere using one or more dual frequency GPS receivers, Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, 724–736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Beutler, G., Gurtner, W., Rothacher, M., Wild, U., Frei, E. (1990). Relative Static Positioning with the Global Positioning System: Basic Technical Considerations. In: Bock, Y., Leppard, N. (eds) Global Positioning System: An Overview. International Association of Geodesy Symposia, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7111-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7111-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97266-4

  • Online ISBN: 978-1-4615-7111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics