Skip to main content

Cloning, Structure, and Expression of Genes of the Anaerobic Rumen Bacteria

  • Chapter
Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

The anaerobic rumen bacteria comprise 30 or so known species of obligately anaerobic bacteria that may be reproducibly isolated from the contents of the ruminant forestomach. Together with the anaerobic protozoa and fungi also found ubiquitously in this ecosystem, these bacteria obtain carbon and energy by degrading plant biomass. In so doing, they produce acetic, butyric, and propionic acids as major fermentation products, and generate microbial biomass that, with undegraded dietary protein, serves as the protein source for the ruminant animal. The intrinsic interest in these organisms derives from their considerable metabolic, taxonomic, and phylogenetic diversity, and their economic importance may be gauged by the prominence of ruminants in world agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barros, M.E.C. and J.A. Thomson. 1987. Cloning and expression in Escherichia coli of a cellulase gene from Ruminococcus flavefaciens. J. Bacteriol. 169:1760–1762.

    PubMed  CAS  Google Scholar 

  • Béguin, P., J. Millet, O. Grépinet, A. Navarro, M. Juy, A. Amit, R. Poljak, and J.-P. Aubert. 1988. The eel (cellulose degradation) genes of Clostridium thermocellum. In: Biochemistry and Genetics of Cellulose Degradation, Aubert, J.-P., P. Béguin, and J. Millet, eds., London and San Diego: Academic Press, pp. 267–282.

    Google Scholar 

  • Béguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44:219–248.

    Article  PubMed  Google Scholar 

  • Berger, E., W.A. Jones, D.T. Jones, and D.R. Woods. 1989. Cloning and sequencing of an endoglucanase (end1) gene from Butyrivibrio fibrisolvens H17c. Mol. Gen. Genet. 219:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Berger, E., W.A. Jones, D.T. Jones, and D.R. Woods. 1990. Sequencing and expression of a cellodextrinase (ced1) gene from Butyrivibrio fibrisolvens H17c cloned in Escherichia coli. Mol. Gen. Genet. 223:310–318.

    Article  PubMed  CAS  Google Scholar 

  • Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3:286–290.

    Article  CAS  Google Scholar 

  • Chesson, A. and C.W. Forsberg. 1988. Polysaccharide Degradation by rumen microorganisms. In:The Rumen Microbial Ecosystem, Hobson, P.N., ed., pp. 251–284. London and New York: Elsevier.

    Google Scholar 

  • Cotta, M.A. 1988. Amylolytic activity of selected species of ruminai bacteria. Appl. Environm. Microbiol. 54:878–883.

    Google Scholar 

  • Cotta, M.A. and R.B. Hespell. 1986. Proteolytic activity of the ruminai bacterium Butyrivibrio fibrisolvens. Appl. Environm. Microbiol. 52:51–58.

    CAS  Google Scholar 

  • Coughlan, M.P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Engin. Rev. 3:39–109.

    CAS  Google Scholar 

  • Crosby, B., B. Collier, D.Y. Thomas, R.M. Teather, and J.D. Erfle. 1984. Cloning and expression in Escherichia coli of cellulase genes from Bacteroides succinogenes. In: Fifth Canadian Bioenergy R & D Seminar, Hasnain, S., ed., pp. 573–576. Amsterdam: Elsevier.

    Google Scholar 

  • Dehority, B. A. and H. W. Scott. 1967. Extent of cellulose and hemicellulose digestion in various forages by pure cultures of rumen bacteria. J. Dairy Sci. 50:1136–1141.

    Article  CAS  Google Scholar 

  • Dehority, B.A. 1969. Pectin-fermenting bacteria isolated from the bovine rumen. J. Bacteriol. 99:189–196.

    PubMed  CAS  Google Scholar 

  • Dehority, B.A. 1967. Rate of hemicellulose degradation and utilization by pure cultures of rumen bacteria. Appl. Microbiol. 15:987–993.

    PubMed  CAS  Google Scholar 

  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Erfle, J.D., R.M. Teather, P.J. Wood, and J.E. Irvin. 1988. Purification and properties of a 1,3–1,4-β-D-glucanase (lichenase, 1,3–1,4-β-d-glucan 4-glucanohydrolase, EC 3.2.1.73) from Bacteroides succinogenes cloned in Escherichia coli. Biochem. J. 255:833–841.

    PubMed  CAS  Google Scholar 

  • Ferreira, L.M.A., A.J. Durrant, J. Hall, G.P. Hazlewood, and H.J. Gilbert. 1990. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochemi. J. 269:261–264.

    CAS  Google Scholar 

  • Flint, H.J. and C.S. Stewart. 1987. Antibiotic resistance patterns and plasmids of ruminai strains of Bacteroides ruminicola and Bacteroides multiacidus. Appl. Microbiol. Biotechnol. 23:450–455.

    Google Scholar 

  • Flint, HJ., C.A. McPherson, and J. Bisset. 1989. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and β-(l-3,l-4)-glucanase activities. Appl. Environm. Microbiol. 55:1230–1233.

    CAS  Google Scholar 

  • Flint, HJ., A.M. Thomson, and J. Bisset. 1988. Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminicola. Appl. Environm. Microbiol. 54:855–860.

    CAS  Google Scholar 

  • Forsberg, C.W., T J. Beveridge, and A. Hellstrom. 1981. Cellulase and xylanase release from Bacteroides succinogenes and its importance in the rumen environment. Appl. Environm. Microbiol. 42:886–896.

    CAS  Google Scholar 

  • Fukumori, F., T. Kudo, N. Sashihara, Y. Nagata, K. Ito, and K. Horikoshi. 1989. The third cellulase of alkalophilic Bacillus sp. strain N-4: evolutionary relationships within the cel gene family. Gene 76:289–298.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, HJ. and J. Hall. 1987. Molecular cloning of Streptococcus bovis lactose catabolic genes. J. Gen. Microbiol. 133:2285–2293.

    CAS  Google Scholar 

  • Gilbert, H.J., J. Hall, G.P. Hazlewood, and L.M.A. Ferreira. 1990. The N-terminal region of an en-doglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulosebinding domain that is distinct from the catalytic centre. Mol. Microbiol. 4:759–767.

    Article  PubMed  CAS  Google Scholar 

  • Gong, J., R.Y.C Lo, and C.W. Forsberg. 1989. Molecular cloning and expression in Escherichia coli of a cellodextrinase gene from Bacteroides succinogenes S85. Appl. Environm. Microbiol. 55:132–136.

    CAS  Google Scholar 

  • Graham, H., P. Aman, O. Theander, N. Kolankaya, and CS. Stewart. 1985. Influence of heat sterilization and ammonia on composition and degradation of straw by pure cultures of rumen bacteria. Anim. Food Sci. Technol. 12: 195–203.

    Article  Google Scholar 

  • Groleau, D. and C.W. Forsberg. 1981. The cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Can. J. Microbiol. 27:517–523.

    Article  PubMed  CAS  Google Scholar 

  • Guiseppi, A., B. Camii, J.-L. Aymeric, G. Ball, and N. Creuzet. 1988. Homology between endoglu-canase Z of Erwinia chrysanthemi and endoglucα-nases of Bacillus subtilis and alkalophilic Bacillus. Mol. Microbiol. 2:159–164.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. and H.J. Gilbert. 1988. The nucleotide sequence of a carboxymethyl cellulase gene from Pseudomonas fluorescens subsp. cellulosa. Mol. Gen. Genet. 213:112–117.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J., G.P. Hazlewood, P J. Barker, and H.J. Gilbert. 1988. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J., G.P. Hazlewood, N.S. Huskisson, A.J. Durrant, and H.J. Gilbert. 1989. Conserved serinerich sequences in xylanase and cellulase of Pseudomonas fluorescens subsp. cellulosa: internal signal sequence and unusual protein processing. Mol. Microbiol. 3:1211–1219.

    Article  PubMed  CAS  Google Scholar 

  • Harfoot, C.G. and G.P. Hazlewood. 1988. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem, Hobson, P.N., ed. pp. 285–322. London and New York: Elsevier.

    Google Scholar 

  • Hazlewood, G.P., K. Davidson, J.I. Laurie, M.P.M. Romaniec, and HJ. Gilbert. 1990. Cloning and sequencing of the celA gene encoding endoglucanase A of Butyrivibrio fibrisol-vens strain A46. J. Gen. Microbiol. 136:2089–2097.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G.P., CG. Orpin, Y. Greenwood, and M.E. Black. 1983. Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction 1 protein (ribulose bisphos-phate carboxylase). Appl. Environm. Microbiol. 45:1780–1784.

    CAS  Google Scholar 

  • Hazlewood, G.P. and R.M. Teather. 1988. The Genetics of Rumen Bacteria. In: The Rumen Microbial Ecosystem, Hobson, P.N., ed., pp. 323–341. London and New York: Elsevier.

    Google Scholar 

  • Hazlewood, G.P., M.P.M. Romaniec, K. Davidson, O. Grépinet, P. Béguin, J. Millet, O. Raynaud, and J.-P. Aubert. 1988. A catalogue of Clostridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiol. Lett. 51:231–236.

    CAS  Google Scholar 

  • Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J.-P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81:83–95.

    Article  PubMed  CAS  Google Scholar 

  • Hespell, R.B., R. Wolf, and RJ. Bothast. 1987. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminai bacterial species. Appl En-vironm. Microbiol. 53:2849–2853.

    CAS  Google Scholar 

  • Hiltner, P. and B.A. Dehority. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environm. Microbiol. 46:642–648.

    CAS  Google Scholar 

  • Honda, H., T. Saito, S. Iijima, and T. Kobayashi. 1988. Molecular cloning and expression of a betα-glucosidase gene from Ruminococcus albus in Escherichia coli. Enzyme Microb. Technol. 10:559–562.

    Article  CAS  Google Scholar 

  • Howard, G.T. and B.A. White. 1988. Molecular cloning and expression of cellulase genes from Ruminococcus albus 8 in Escherichia coli bacteriophage lambda. Appl. Environm. Microbiol. 54:1752–1755.

    CAS  Google Scholar 

  • Howard, G.T. and B.A. White. 1990. Cloning in Escherichia coli of a afunctional cellulase/ xylanase enzyme from Ruminococcus flavefaciens FD-l. Anim. Biotechnol 1:95–106.

    CAS  Google Scholar 

  • Huang, L. and C.W. Forsberg. 1988. Purification and comparison of the periplasmic and extracellular forms of the cellodextrinase from Bacteroides succinogenes. Appl. Environm. Microbiol. 54:1488–1493.

    CAS  Google Scholar 

  • Huang, L., C.W. Forsberg, and D.Y. Thomas. 1988. Purification and characterization of a chloride stimulated cellobiosidase from Bacteroides succinogenes S85. J. Bacteriol 170:2923–2932.

    PubMed  CAS  Google Scholar 

  • Huang, C.-M., W.J. Kelly, R.V. Asmundson, and P.-L. Yu. 1989. Molecular cloning and expression of multiple cellulase genes of Ruminococcus flavefaciens strain 186 in Escherichia coli. Appl. Microbiol Biotechnol 31:265–271.

    Article  CAS  Google Scholar 

  • Irvin, J.E. and R.M. Teather. 1988. Cloning and expression of a Bacteroides succinogenes mixed linkage ß-glucanase (1,3–1,4-β-d-glucan 4-glucanohydrolase) gene in Escherichia coli. Appl. Environm. Microbiol. 54:2672–2676.

    CAS  Google Scholar 

  • Joliff, G., P. Béguin, and J.-P. Aubert. 1986. Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermocellum. Nucleic Acids Res. 14:8605–8613.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, S., H. Honda, T. Tanase, M. Taya, S. Iijima, and T. Kobayashi. 1987. Molecular cloning of Ruminococcus albus cellulase gene. Agric. Biol Chem. 51:59–63.

    Article  CAS  Google Scholar 

  • Knowles, J., P. Lehtovaara, and T. Teeri. 1987. Cellulase families and their genes. Trends Biotechnol 5:255–261.

    Article  CAS  Google Scholar 

  • Lamed, R. and E.A. Bayer. 1988. The Cellulosome of Clostridium thermocellum. Adv. Appl Microbiol. 33:1–46.

    Article  Google Scholar 

  • Mann, S.P., G.P. Hazlewood, and C.G. Orpin. 1986. Characterization of a cryptic plasmid (pOMl) in Butyrivibrio fibrisolvens by restriction endonuclease analysis and its cloning in Escherichia coli. Curr. Microbiol. 13:17–22.

    Article  CAS  Google Scholar 

  • Mann, S.P. 1988. Subcloning of beta glucanase genes from Ruminococcus albus, Clostridium thermocellum and Butyrivibrio fibrisolvens using the shuttle vector pSA3. Lett. Appl Microbiol. 7: 119–122.

    Article  CAS  Google Scholar 

  • Martin, S.A. and R.G. Dean. 1989. Characterization of a plasmid from the ruminai bacterium Seleno-monas ruminantium. Appl Environm. Microbiol. 55:3035–3038.

    CAS  Google Scholar 

  • Matsushita, O., J.B. Russell, and D.B. Wilson. 1989. Cloning of Bacteroides ruminicola B14 endoglucanase gene into Escherichia coli. p.365. Abstr. Annu. Meeting Am. Soc. Microbiol.

    Google Scholar 

  • Matsushita, O., J.B. Russeu, and D.B. Wilson. 1990. Cloning and sequencing of a Bacteroides ruminicola B14 endoglucanase gene. J. Bacteriol. 172:3620–3630.

    PubMed  CAS  Google Scholar 

  • McGavin, M.J. and C.W. Forsberg. 1988. Isolation and characterization of Endoglucanase 1 and Endoglucanase 2 from Bacteroides succinogenes S85. J. Bacteriol. 170:2914–2922.

    PubMed  CAS  Google Scholar 

  • McGavin, M.J. and C.W. Forsberg. 1989. Catalytic and substrate-binding domains of endoglucanase 2 from Bacteroides succinogenes. J. Bacteriol 171:3310–3315.

    PubMed  CAS  Google Scholar 

  • McGavin, M.J., C.W. Forsberg, B. Crosby, A.W. Beu, D. Dignard, and D.Y. Thomas. 1989. Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J. Bacteriol 171:5587–5595.

    PubMed  CAS  Google Scholar 

  • Minton, N.P., H.M.S. Bullman, M.D. Scawen, T. Atkinson, and H.J. Gilbert. 1986. Nucleotide sequence of the Erwinia chrysanthemi NCPPB1066 L-asparaginase gene. Gene 46:25–33.

    Article  PubMed  CAS  Google Scholar 

  • Misawa, N. and K. Nakamura. 1989. Expression and stability of a betα-glucosidase gene of Ruminococcus albus in Zymomonas mobilis. Agric. Biol Chem. 53:723–727.

    Article  CAS  Google Scholar 

  • Montgomery, L., B.A. Flesher, and D.A. Stahl. 1988. Transfer of Bacteroides succinogenes (Hun-gate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int. J. Systemat. Bacteriol 38:430–435.

    Article  Google Scholar 

  • Morris, E.J. and N.O. van Gylswyk. 1980. Comparison of the action of rumen bacteria on cell walls from Eragrostis tef. J. Agric. Sci. 95:313–323.

    Article  CAS  Google Scholar 

  • Murphy, N., D.J. McConnel, and B.A. Cantwell. 1984. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme β-glucanase. Nucleic Acids Res. 12:5355–5367.

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, G., S.H. Goh, R.A.J. Warren, D.G. Kilburn, and R.C. Miller. 1986. Structure of the gene encoding the exoglucanase of Cellulomonas fimi. Gene 44:325–330.

    Article  PubMed  Google Scholar 

  • Ohmiya, K., T. Kajino, A. Kato, and S. Shimizu. 1989. Structure of a Ruminococcus albus endo-1,4-β-glucanase gene. J. Bacteriol 171:6771–6775.

    PubMed  CAS  Google Scholar 

  • Ohmiya, K., K. Nagashima, T. Kajino, E. Goto, A. Tsukada, and S. Shimizu. 1988. Cloning of the cellulase gene from Ruminococcus albus and its expression in Escherichia coli. Appl. Environm Microbiol. 54:1511–1515.

    CAS  Google Scholar 

  • Ohmiya, K., M. Takano, and S. Shimizu. 1990. DNA sequence of β-glucosidase from Ruminococcus albus. Nucleic Acids Res. 18:671.

    Article  PubMed  CAS  Google Scholar 

  • Orpin, C.G., S.D. Mathiesen, Y. Greenwood, and A.S. Blix. 1985. Seasonal changes in the ruminai microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhyncus). Appl. Environm. Microbiol. 50:144–151.

    CAS  Google Scholar 

  • Penttilä, M., P. Lehtovaara, H. Nevalainern, R. Bhikhabhai, and J. Knowles. 1986. Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45:253–263.

    Article  PubMed  Google Scholar 

  • Pettipher, G.L. and M.J. Latham. 1979. Characteristics of enzymes produced by Ruminococcus flavefα-ciens which degrade plant cell walls. J. Gen. Microbiol. 110:21–27.

    CAS  Google Scholar 

  • Poole, D.H., G.P. Hazlewood, J.I. Laurie, P.J. Barker, and H.J. Gilbert. 1990. Nucleotide sequence of the Ruminococcus albus SY3 endoglucanase genes celA and celB. Mol. Gen. Genet. 223:217–223.

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff, W.S., D.A. Siegele, D.W. Cowing, and C. A. Gross. 1985. The regulation of transcription initiation in bacteria. Annu. Rev. Genet. 19:355–387.

    Article  PubMed  CAS  Google Scholar 

  • Robson, L.M. and G.H. Chambliss. 1987. Endo-jß-1,4-glucanase gene of Bacillus subtilis DLG. J. Bacteriol. 169:2017–2025.

    PubMed  CAS  Google Scholar 

  • Robson, L.M. and G.H. Chambliss. 1989. Cellulases of bacterial origin. Enzyme Microb. Technol. 11:626–645.

    Article  CAS  Google Scholar 

  • Romaniec, M.P.M., K. Davidson, B.A. White, and G.P. Hazlewood. 1989. Cloning of Ruminococcus albus endo-β-l,4-glucanase and xylanase genes. Lett. Appl. Microbiol. 9:101–104.

    Article  CAS  Google Scholar 

  • Schellhorn, H.E. and C.W. Forsberg. 1984. Multiplicity of extracellular β-(1,4)-endoglucanases of Bacteroides succinogenes. Can. J. Microbiol. 30:930–937.

    Article  CAS  Google Scholar 

  • Sewell, G.W., E.A. Utt, R.B. Hespell, K.F. Mackenzie, and L.O. Ingram. 1989. Identification of the Butyrivibrio fibrisolvens xylosidase gene (xylB) coding region and its expression in Escherichia coli. Appl. Environm. Microbiol. 55:306–311.

    CAS  Google Scholar 

  • Shane, B.S., L. Gouws, and A. Kistner. 1969. Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay. J. Gen. Microbiol. 55:445–457.

    PubMed  CAS  Google Scholar 

  • Sipat, A., K.A. Taylor, R.Y.C. Lo, C.W. Forsberg, and P.J. Krell. 1987. Molecular cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli. Appl. Environm. Microbiol. 53:477–481.

    CAS  Google Scholar 

  • Stahl, D.A., B.A. Flesher, H.R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminai microbial ecology. Appl. Environm. Microbiol. 54:1079–1084.

    CAS  Google Scholar 

  • Stewart, C.S. and H.J. Flint. 1989. Bacteroides (Fïbrobacter)succinogenes, a cellulolytic anaerobic bacterium from the gastrointestinal tract. Appl. Microbiol. Biotechnol. 30:433–439.

    CAS  Google Scholar 

  • Stewart, C.S. and M.P. Bryant. 1988. The Rumen Bacteria. In: The Rumen Microbial Ecosystem, Hobson, P.N., ed., pp. 21–75. London and New York: Elsevier.

    Google Scholar 

  • Taylor, K.A.B., B. Crosby, M. McGavin, C.W. Forsberg, and D.Y. Thomas. 1987. Characteristics of the endoglucanase encoded by a cel gene from Bacteroides succinogenes expressed in Escherichia coli. Appl. Environm. Microbiol. 53:41–46.

    CAS  Google Scholar 

  • Teather, R.M. 1985. Application of gene manipulation to rumen microflora. Can. J. Anim. Sci. 65:563–574.

    Article  CAS  Google Scholar 

  • Teather, R.M. and J.D. Erfle. 1990. DNA sequence of a Fibrobacter succinogenes mixed linkage β-glucanase (1,3–1,4-β-D-glucanohydrolase) gene. J. Bacteriol. 172:3837–3841.

    PubMed  CAS  Google Scholar 

  • Teeri, T.T., P. Lehtovaara, S. Kauppinen, I. Salovuori, and J. Knowles. 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohyd-rolase II. Gene 51:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Utt, E.A. and L.O. Ingram. 1989. Cloning and sequencing of Butyrivibrio fibrisolvens genes for xylan degradation, p.311. Abstr. Annu. Meeting Am. Soc. Microbiol.

    Google Scholar 

  • Ware, C.E., T. Bauchop, and K. Gregg. 1989. The isolation and comparison of cellulase genes from 2 strains of Ruminococcus albus. J. Gen. Microbiol. 135:921–930.

    PubMed  CAS  Google Scholar 

  • White, B.A., J.H. Clarke, K.C. Doerner, V.K. Gupta, C.T. Helaszek, G.T. Howard, M. Monison, A.A. Odenyo, S. Rosenzweig, and R.I. Mackie. 1990. Improving cellulase activity in Ruminococcus through genetic manipulation. In: Microbial and Plant Opportunities to Improve Liqnocellulose Utilization by Ruminants, Akin, D.E., L.G. Ljungdahl, J.R. Wilson, and P.J. Harris, eds., pp. 389–400. London and New York: Elsevier.

    Google Scholar 

  • Whitehead, T.R. and R.B. Hespell. 1989a. Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl. Environm. Microbiol. 55:893–896.

    CAS  Google Scholar 

  • Whitehead, T.R. and R.B. Hespell. 1989b. Cloning of genes for xylanolytic enzymes from Bacteroides ovatus 975. p. 258. Abstr. Annu. Meeting Am. Soc. Microbiol.

    Google Scholar 

  • Wong, W.K.R., B. Gerhard, Z.M. Guro, D.G. Kilburn, R.A.J. Warren, and R.C. Miller. 1986. Characterization and structure of an endoglu-canase gene celA of Cellulomonas fimi. Gene 44:315–324.

    Article  PubMed  CAS  Google Scholar 

  • Wong, K.K.Y., L.U.L. Tan, and J.N. Saddler. 1988. Multiplicity of β-1,4-xylanases in microorganisms: functions and applications. Microbiological Reviews 52:305–317.

    PubMed  CAS  Google Scholar 

  • Woods, J.R., J.F. Hudman, and K. Gregg. 1989. Isolation of an endoglucanase gene from Bacter-oides ruminicola subsp. brevis. J. Gen. Microbiol. 133:2543–2549.

    Google Scholar 

  • Zappe, H., W.A. Jones, D.T. Jones, and D.R. Woods. 1988. Structure of an endo-β-1,4-glucanase gene from Clostridium acetobutylicum P262 showing homology with endoglucanase genes from Bacillus spp. Appl. Environm. Microbiol. 54:1289–1292.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Teather, R.M., Gilbert, H.J., Hazlewood, G.P. (1993). Cloning, Structure, and Expression of Genes of the Anaerobic Rumen Bacteria. In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_42

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics