Skip to main content

Molecular Biology of the Acetoclastic Methanogen Methanothrix soehngenii

  • Chapter
  • 591 Accesses

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Acetate forms about 70% of the methanogenic substrates in anaerobic digestors (Smith and Mah, 1966; Gujer and Zehnder, 1983; Zinder et al., 1984; Fukuzaki et al., 1990) and is the only dicarbon substrate that methanogenic bacteria can degrade completely (Thauer et al., 1989). The ability to catabolize acetate to methane is restricted to only two genera, Methanosarcina and Methanothrix, of the Kingdom Euryarchaeota, which belongs to the archaeal domain (Woese et al., 1990). Methanosarcina spp. are generalistic organisms, capable of degrading a variety of substrates like H2/CO2, methanol, methylamines, and acetate (Hutten et al., 1980; Kenealy and Zeikus, 1982; Krzycki et al., 1982; Smith and Mah, 1980). In contrast, Methanothrix sp. is a specialist that can use only acetate as its carbon and energy source (Huser et al., 1982; Zehnder et al., 1980).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceti, D.J. and J.G. Ferry. 1988. Purification and characterization of acetate kinase from acetate-grown Methanosarcina. Evidence for regulation of synthesis.J. Biol. Chem. 263:15444–15448.

    PubMed  CAS  Google Scholar 

  • Achenbach-Richter, L. and C.R. Woese. 1988. The ribosomal gene spacer region in archaebacteria. Syst. Appl. Microbiol. 10:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Albano, M., R. Breitling, and D.A. Dubnau. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon.J. Bacteriol. 171:5386–5304.

    PubMed  CAS  Google Scholar 

  • Allan, G. and S.H. Zinder. 1990. Characterization of carbon monoxide dehydrogenase activity in the thermophilic acetotrophic methanogen: Methanothrix sp. strain CALS-1. In: Abstracts, 90th Annual Meeting of the American Society for Microbiology, Abstr. 140. Washington, D.C.: American Society for Microbiol.

    Google Scholar 

  • Blaschek, H.P. 1989. Genetic manipulation of the Clostridia. Dev. Ind. Microbiol. 30:35–42.

    CAS  Google Scholar 

  • Brown, J.W., C.J. Daniels, and J.N. Reeve. 1989. CRC Crit. Rev. Microbiol. 16:287–338.

    Article  CAS  Google Scholar 

  • Connerton, I.F., J.R.S. Fincham, R.A. Sandeman, and M.J. Hynes. 1990. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the ascomycete fungi, Aspergillus nidulans and Neurospora crassa. Mol. Microbiol. 4:451–460.

    Article  PubMed  CAS  Google Scholar 

  • De Wet, J.R., K.V. Wood, M. DeLuca, D.K. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.

    PubMed  Google Scholar 

  • Eggen, R., H. Harmsen, and W.M. de Vos. 1990. Organization of a ribosomal RNA gene cluster from the archaebacterium Methanothrix soehngenii. Nucleic Acids Res. 18:1306.

    Article  PubMed  CAS  Google Scholar 

  • Eggen, R., H. Harmsen, A. Geerling, and W.M. de Vos. 1989. Nucleotide sequence of a 16S rRNA encoding gene from the archaebacterium Methanothrix soehngenii. Nucleic Acids Res. 17:22.

    Article  Google Scholar 

  • Eggen, R.I.L., A.C.M. Geerling, M.S.M. Jetten, and W.M. de Vos. 1991a. Cloning, expression and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:6883–6887.

    PubMed  CAS  Google Scholar 

  • Eggen, R.I.L., A.C.M. Geerling, A.B.P. Boshoven and W.M. de Vos. 1991b. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J. Bacteriol. 173: 6383–6389.

    PubMed  CAS  Google Scholar 

  • Eikmanns, B. and R.K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 135:365–370.

    Article  Google Scholar 

  • Fischer, R. and R.K. Thauer. 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. FEBS Lett. 228:249–253.

    Article  CAS  Google Scholar 

  • Fukuzaki, S., N. Nishio, and S. Nagai. 1990. Kinetics of the methanogenic fermentation of acetate. Appl. Environ. Microbiol. 56:3158–3163.

    PubMed  CAS  Google Scholar 

  • Grahame, D.A. and T.C. Stadtman. 1987a. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate. Biochem. Biophys. Res. Commun. 147:254–258.

    Article  PubMed  CAS  Google Scholar 

  • Grahame, D.A. and T.C. Stadtman. 1987b. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physicochemical properties of the enzyme.J. Biol. Chem. 262:3706–3712.

    PubMed  CAS  Google Scholar 

  • Gujer, W. and A.J.B. Zehnder. 1983. Conversion processes in anaerobic digestion. Water Sci. Technol. 15:49–77.

    Google Scholar 

  • Hagen, W.R., A.J. Pierik, and C. Veeger. 1989. Novel electron paramagnetic resonance signals from an Fe/S protein containing 6 iron atoms.J. Chem. Soc. Faraday Trans. 85:4083–4090.

    Article  CAS  Google Scholar 

  • Huser, B.A., K. Wuhrmann, and A.J.B. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1–9.

    Article  CAS  Google Scholar 

  • Hutten, T.J., H.C.M. Bongaerts, C. van der Drift, and G.D. Vogels. 1980. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Antonie Leeuwenhoek J. Microbiol. 46:601–610.

    Article  CAS  Google Scholar 

  • Jarsch, M. and A. Böck. 1985. Sequence of the 16S rRNA from M. vannielii. Syst. Appl. Microbiol. 6:54–59.

    Article  CAS  Google Scholar 

  • Jetten, M.S.M., A.J.M. Stams, and A.J.B. Zehnder. 1989a. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J. Bacteriol. 171:5430–5435.

    PubMed  CAS  Google Scholar 

  • Jetten, M.S.M., A.J.M. Stams, and A.J.B. Zehnder. 1989b. Purification and characterization of an oxygen stable carbon monoxide dehydrogenase of Methanothrix soehngenii. Eur. J. Biochem. 241:1938–1947.

    Google Scholar 

  • Jetten, M.S.M., A.J.M. Stams, and A.J.B. Zehnder. 1990a. Purification and some properties of the methyl-CoM reductase of Methanothrix soehngenii. FEMS Microbiol. Lett. 66:183–186.

    Article  CAS  Google Scholar 

  • Jetten, M.S.M., A.J.M. Stams, and A.J.B. Zehnder. 1990b. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.

    Article  CAS  Google Scholar 

  • Jetten, M.S.M., W.R. Hagen, A.J. Pierik, A.J.M. Stams, and A.J.B. Zehnder. 1991. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 195:385–391.

    Article  PubMed  CAS  Google Scholar 

  • Kenealy, W.R. and J.G. Zeikus. 1982. One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J. Bacteriol. 151:932–941.

    PubMed  CAS  Google Scholar 

  • Knaub, S. and A. Klein. 1990. Specific transcription of cloned Methanobacterium thermoautotrophicum transcription units by homologous RNA polymerase in vitro. Nucleic Acids Res. 18:1441–1446.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, H.-P.E. and A.J.B. Zehnder. 1984. Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soehngenii. FEMS Microbiol. Lett. 21:287–292.

    Article  CAS  Google Scholar 

  • Krzycki, J. and J.G. Zeikus. 1984. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J. Bacteriol. 158:231–237.

    PubMed  CAS  Google Scholar 

  • Krzycki, J.A., L.J. Lehman, and J.G. Zeikus. 1985. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl-coenzyme M, and methylreductase.J. Bacteriol. 163:1000–1006.

    PubMed  CAS  Google Scholar 

  • Krzycki, J.A., R.H. Wolkin, and J.G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.

    PubMed  CAS  Google Scholar 

  • Laufer, K., B. Eikmanns, U. Frimmer, and R.K. Thauer. 1987. Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyl iodide, CO2, and H2 by the enzyme system involved. Z.Naturforsch. Teil C Biosci. 42:360–372.

    CAS  Google Scholar 

  • Lechner, K., G. Wich, and A. Böck. 1985. The nucleotide sequence of the 16S rRNA gene and flanking regions from M. formicicum. On the phylogenetic relationship between methanogenic and halophilic archaebacteria. Syst. Appl. Microbiol. 6:157–163.

    Article  CAS  Google Scholar 

  • Lovley, D.R., R.H. White and J.G. Ferry. 1984. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp.J. Bacteriol. 160:521–525.

    PubMed  CAS  Google Scholar 

  • Lozoya, E., H. Hoffmann, C. Douglas, D. Schulz, D. Scheel, and K. Hahlbrock. 1988. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley. Eur. J. Biochem. 176:661–667.

    Article  PubMed  CAS  Google Scholar 

  • Lundie, L.L., Jr., and J.G. Ferry. 1989. Activation of acetate by Methanosarcina thermophila. J. Biol. Chem. 264:18392–18396.

    PubMed  CAS  Google Scholar 

  • Matsuyama, A., H. Yamamoto, and E. Nakano. 1989. Cloning, expression, and nucleotide sequence of the Escherichia coli K-12 ackA gene.J. Bacteriol. 171:577–580.

    PubMed  CAS  Google Scholar 

  • Nelson, M.J.K. and J.G. Ferry. 1984. Carbon monoxide dependent methyl coenzyme M methyl reductase in acetotrophic Methanosarcina spp.J. Bacteriol. 160:526–532.

    PubMed  CAS  Google Scholar 

  • Nozhevnikova, A.N. and V. Chudina. 1985. Morphology of the thermophilic acetate methane bacterium Methanothrix thermoacetophila sp. nov. Microbiology 53:756–766.

    Google Scholar 

  • Okazaki, K., T. Takechi, N. Kambara, S. Fukui, I. Kubota, and T. Kamiryo. 1986. Two acylcoenzyme A oxidases in peroxisomes of the yeast Candida tropicalis: primary structures deduced from the genomic DNA sequence. Proc. Natl. Acad. Sci. USA 83; 1232–1236.

    Article  PubMed  CAS  Google Scholar 

  • 0stergaard, L., N. Larsen, H. Leffers, J. Kjems, and R. Garrett. 1987. A ribosomal RNA Operon and its flanking region from the archaebacterium Methanobacterium thermoautotrophicum, Marburg strain: transcription signals, RNA structure and evolutionary implications. Syst. Appl. Microbiol. 9:199–209.

    Article  Google Scholar 

  • Otaka, E. and T. Ooi. 1987. Examination of protein sequence homologies IV. Twenty-seven bacterial ferredoxins.J. Mol. Evol. 26:257–267.

    Article  PubMed  CAS  Google Scholar 

  • Patel, G.B. 1984. Characterization and nutritional properties of Methanothrix concilii sp. nov., a mesophilic, aceticlastic methanogen. Can. J. Microbiol. 30:1383–1396.

    Article  CAS  Google Scholar 

  • Patel, G.B. and G.D. Sprott. 1990. Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int. J. Syst. Bacteriol. 40:79–82.

    Article  Google Scholar 

  • Pellerin, P., B. Gruson, C. Prensier, G. Albagnac, and P. Debeire. 1987. Glycogen in Methanothrix. Arch. Microbiol. 146:377–381.

    Article  CAS  Google Scholar 

  • Reeve, J.N., G.S. Beckler, D.S. Cram, P.T. Hamilton, J.W. Brown, J.A. Krzycki, A.F. Kolodziej, A. Alex, W.H. Orme-Johnson, and C.T. Walsh. 1989. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain AH encodes a polyferredoxin. Proc. Natl. Acad. Sci. USA 86:3031–3035.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, W.-D., U. Hüdepohl, and W. Zillig. 1990. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for the transcription efficiency and start-site selection in vitro. Proc. Natl. Acad. Sci. USA 87:9509–9513.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P.H. and R.A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Environ. Microbiol. 14:368–371.

    CAS  Google Scholar 

  • Smith, P.H. and R.A. Mah. 1980. Acetate as sole carbon and energy source for growth of Methanosarcina barkeri strain 227. Appl. Environ. Microbiol. 39:993–999.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., E. Seewaldt, W. Ludwig, K.-H. Schleifer, and B.A. Huser. 1982. The phylogenetic position of Methanothrix soehngenii. Elucidated by a modified technique of sequencing oligonucleotides from 16S rRNA. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1. Abt. Orig. 3:90–100.

    CAS  Google Scholar 

  • Steigerwald, V.J., G.S. Beckler, and J.N. Reeve. 1990. Conservation of hydrogenase and polyferredoxin structures in the hyperthermophilic archaebacterium Methanothermus fervidus. J. Bacteriol. 172:4715–4718.

    PubMed  CAS  Google Scholar 

  • Terlesky, K.C., M.J.K. Nelson, and J.G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.

    PubMed  CAS  Google Scholar 

  • Terlesky, K.C., M.J. Barber, D.J. Aceti, and J.G. Ferry. 1987. EPR properties of the nickel-iron-carbon center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 262:15392–15395.

    PubMed  CAS  Google Scholar 

  • Thauer, R.K. 1988. Citric-acid cycle, 50 years on: modifications and an alternative pathway in anaerobic bacteria. Eur. J. Biochem. 176:497–508.

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R.K., D. Möller-Zinkhan, and A.M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann. Rev. Microbiol. 43:43–67.

    Article  CAS  Google Scholar 

  • Thomm, M., G. Wich, J.W. Brown, G. Frey, B.A. Sherf, and G.S. Beckler. 1989. An archaebacterial promoter sequence assigned by RNA polymerase binding experiments. Can. J. Microbiol. 35:30–35.

    Article  PubMed  CAS  Google Scholar 

  • Touzel, J.P., G. Prensier, J.L. Roustan, I. Thomas, H.C. Dubourguier, and G. Albagnac. 1988. Description of a new strain of Methanothrix soehngenii and rejection of Methanothrix concilii as a synonym of Methanothrix soehngenii. Int. J. Syst. Bacteriol. 38:30–36.

    Article  CAS  Google Scholar 

  • van de Wijngaard, W.M.H., C. van der Drift, and G.D. Vogels. 1988. Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol. Lett. 52:165–172.

    Article  Google Scholar 

  • Woese, C.R., O. Kandier, and M.L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579.

    Article  PubMed  CAS  Google Scholar 

  • Yang, D., B.P. Kaine, and C.R. Woese. 1985. The phylogeny of archaebacteria. Syst. Appl. Microbiol. 6:251–256.

    Article  CAS  Google Scholar 

  • Zehnder, A.J.B., B.A. Huser, T.D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Zillig, W., P. Palm, W.-D. Reiter, F. Gropp, G. Pühler, and H.-P. Klenk, 1988. Comparative evaluation of gene expression in archaebacteria. Eur. J. Biochem. 173:473–482.

    Article  PubMed  CAS  Google Scholar 

  • Zinder, S.H., S.C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Eggen, R.I.L., de Vos, W.M. (1993). Molecular Biology of the Acetoclastic Methanogen Methanothrix soehngenii . In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics