Skip to main content

The α-Amylase-Pullulanase (apu) Gene from Clostridium thermohydrosulfuricum: Nucleotide Sequence and Expression in Escherichia coli

  • Chapter
Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Starch consists of two high molecular mass fractions, amylose and amylopectin, both composed of anhydro glucose units connected to each other by α-glycosidic linkages. In the straight-chain fraction, amylose, there are only α-1,4 linkages, whereas in the branched-chain fraction, amylopectin, short α-1,4 chains are linked to each other by α-1,6 linkages at the branch points. The relative amount of α-1,6 linkages depends on the source of the starch but is approximately 3%–4% in most common starches (Fogarty and Kelly, 1979). α-Amylases (EC 3.2.1.1) hydrolyze α-1,4 linkages in amylose and amylopectin in an endo fashion, producing dextrins and maltooligosaccharides and causing a rapid decrease in the viscosity and iodine-binding capacity of the starch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alff-Steinberger, C. 1984. Evidence for a coding pattern on the non-coding strand of the E. coli genome. Nucleic Acids Res. 12:2235–2241.

    Article  PubMed  CAS  Google Scholar 

  • Amemura, A., R. Chakraborty, M. Fujita, T. Noumi, and M. Futai. 1988. Cloning and nucleotide sequence of the isoamylase gene from Pseudomonas amyloderamosa SB-15. J. Biol Chem. 263:9271–9275.

    PubMed  CAS  Google Scholar 

  • Antranikian, G. 1990. Physiology and enzymology of thermophilic anaerobic bacteria degrading starch. FEMS Microbiol Rev. 75:201–218.

    Article  CAS  Google Scholar 

  • Aymerich, S., G. Gonzy-Tréboul, and M. Steinmetz. 1986. 5’-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J. Bacteriol. 166:993–998.

    PubMed  CAS  Google Scholar 

  • Béguin, P., P. Cornet, and J.-P. Aubert. 1985. Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J. Bacteriol. 162:102–105.

    PubMed  Google Scholar 

  • Binder, F., O. Huber, and A. Bock. 1986. Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5al: cloning, nucleotide sequence and expression. Gene (Amst.) 47:269–277.

    Article  CAS  Google Scholar 

  • Brennan, R.G. and B.W. Matthews. 1989. Structural basis of DNΑ-protein recognition. Trends Biochem. Sci. 14:286–290.

    Article  PubMed  CAS  Google Scholar 

  • Buisson, G., E. Duée, R. Haser, and F. Payan. 1987. Three dimensional structure of porcine pancreatic α-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J. 6:3909–3916.

    PubMed  CAS  Google Scholar 

  • Coleman, R.D., S.-S. Yang, and M.P. McAlister. 1987. Cloning of the debranching-enzyme gene from Thermoanaerobium brockii into Escherichia coli and Bacillus subtilis. J. Bacteriol. 169:4302–4307.

    PubMed  CAS  Google Scholar 

  • Crombrugghe, B., S. Busby, and H. Buc. 1984. Cyclic AMP receptor protein: role in transcription activation. Science 224:831–838.

    Article  PubMed  Google Scholar 

  • Crutz, A.-M., M. Steinmetz, S. Aymerich, R. Richter, and D. Le Coq. 1990. Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. J. Bacteriol. 172:1043–1050.

    PubMed  CAS  Google Scholar 

  • Ebright, R.H., Y.W. Ebright, and A. Gunasekera. 1989. Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res. 17:10295–10305.

    Article  PubMed  CAS  Google Scholar 

  • d’Enfert, C, C. Chapon, and A.P. Pugsley. 1987. Export and secretion of the lipoprotein pullulα-nase by Klebsiella pneumoniae. Mol Microbiol. 1:107–116.

    Article  PubMed  Google Scholar 

  • Fogarty, W.M. and C.T. Kelly. 1979. Starch-degrading enzymes of microbial origin. In: Progress in Industrial Microbiology, Vol. 15, M.J. Bull, ed., pp. 87–150. Amsterdam: Elsevier.

    Google Scholar 

  • Gamier, J., D.J. Osguthorpe, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol Biol 120:97–120.

    Article  Google Scholar 

  • Grépinet, O., M.-C. Chebrou, and P. Béguin. 1988. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J. Bacteriol. 170:4582–4588.

    PubMed  Google Scholar 

  • Grosjean, H. and W. Fiers. 1982. Preferential codon usage in procaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene (Amst.) 18:199–209.

    Article  CAS  Google Scholar 

  • Hershey, J.W.B. 1987. Protein synthesis. In:Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, Vol. 1, F.C. Neidhardt, ed., pp. 613–647. Washington, D.C: American Society for Microbiology.

    Google Scholar 

  • Hoshiko, S., O. Makabe, C. Nojiri, K. Katsumata, E. Satoh, and K. Nagaoka. 1987. Molecular cloning and characterization of the Streptomyces hygroscopicus α-amylase gene. J. Bacteriol. 169: 1029–1036.

    PubMed  CAS  Google Scholar 

  • Hyun, H.H. and J.G. Zeikus. 1985a. General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 49:1168–1173.

    PubMed  CAS  Google Scholar 

  • Hyun, H.H. and J.G. Zeikus. 1985b. Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum. J. Bacteriol. 164:1146–1152.

    PubMed  CAS  Google Scholar 

  • Ihara, H., T. Sasaki, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a thermophilic flamylase gene: homology between procaryotic and eucaryotic α-amylases at the active sites. J. Biochem. 98:95–103.

    PubMed  CAS  Google Scholar 

  • Joliff, G., P. Béguin, and J.-A. Aubert. 1986. Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermo-cellum. Nucleic Acids Res. 14:8605–8613.

    Article  PubMed  CAS  Google Scholar 

  • Katsuragi, N., N. Takizawa, and Y. Murooka. 1987. Entire nucleotide sequence of the pullulanase gene of Klebsiella aerogenes W70. J. Bacteriol. 169:2301–2306.

    PubMed  CAS  Google Scholar 

  • Klingeberg, M., H. Hippe, and G. Antranikian. 1990. Production of novel pullulanases at high concentrations by two newly isolated thermophilic Clostridia. FEMS Microbiol. Lett. 69:145–152.

    Article  CAS  Google Scholar 

  • Kreuzer, P., D. Gärtner, R. Allmansberger, and W. Hillen. 1989. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. J. Bacteriol. 171:3840–3845.

    PubMed  CAS  Google Scholar 

  • Kuriki, T. and T. Imanaka. 1989. Nucleotide sequence of the neopullulanase gene from Bacillus stearothermophilus. J. Gen. Microbiol. 135: 1521–1528.

    PubMed  CAS  Google Scholar 

  • Kyte, J. and R.F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Laoide, B.M., G.H. Chambliss, and DJ. McCon-nell. 1989. Bacillus licheniformis α-amylase gene, amyh, is subject to promoter-independent catabolite repression in Bacillus subtilis. J. Bacteriol. 171:2435–2442.

    PubMed  CAS  Google Scholar 

  • Long, C.M., M.-J. Virolle, S.-Y. Chang, S. Chang, and M.J. Bibb. 1987. α-Amylase gene of Streptomyces limosus: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate α-amylases. J. Bacteriol. 169:5745–5754.

    PubMed  CAS  Google Scholar 

  • Mathupala, S., B.C. Saha, and J.G. Zeikus. 1990. Substrate competition and specificity at the active site of amylopullulanase from Clostridium thermohydrosulfuricum. Biochem. Biophys. Res. Commun. 166:126–132.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Takα-amylase A. J. Biochem. (Tokyo) 95:697–702.

    CAS  Google Scholar 

  • McConnell, D.J., B.A. Cantwell, K.M. Devine, A.J. Forage, B.M. Laoide, C. O’Kane, J.F. Ollington, and P.M. Sharp. 1986. Genetic engineering of extracellular enzyme systems of Bacilli. In: Biochemical Engineering IV, C.H. Lim, and K. Venkatasubramanian, eds., Ann. N.Y. Acad. Sci. 469:1–17.

    Google Scholar 

  • Melasniemi, H. 1987a. Effect of carbon source on production of thermostable α-amylase, pullulanase and α-glucosidase by Clostridium thermohydrosulfuricum. J. Gen. Microbiol. 133:883–890.

    CAS  Google Scholar 

  • Melasniemi, H. 1987b. Characterization of α-amylase and pullulanase activities of Clostridium thermohydrosulfuricum. Evidence for a novel thermostable amylase. Biochem. J. 246: 193–197.

    PubMed  CAS  Google Scholar 

  • Melasniemi, H. 1988. Purification and some properties the extracellular α-amylase-pullulanase produced by Clostridium thermohydrosulfuricum. Biochem. J. 250:813–818.

    PubMed  CAS  Google Scholar 

  • Melasniemi, H. and M. Paloheimo. 1989. Cloning and expression of the Clostridium thermohydrosulfuricum α-amylase-pullulanase gene in Escherichia coli. J. Gen. Microbiol. 135:1755–1762.

    PubMed  CAS  Google Scholar 

  • Melasniemi, H., M. Paloheimo, and L. Hemiö. 1990. Nucleotide sequence of the α-amylase-pullulanase gene from Clostridium thermohydrosulfuricum. J. Gen. Microbiol. 136:447–454.

    PubMed  CAS  Google Scholar 

  • Nakajima, R., T. Imanaka, and S. Aiba. 1985. Nucleotide sequence of the Bacillus stearothermophilus α-amylase gene. J. Bacteriol. 163:401–406.

    PubMed  CAS  Google Scholar 

  • Nakajima, R., T. Imanaka, and S. Aiba. 1986. Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23:355–360.

    Article  CAS  Google Scholar 

  • Nakamura, N., N. Sashihara, H. Nagayama, and K. Horikoshi. 1989. Characterization of pullulanase and α-amylase activities of a Thermus sp. AMD33. Starch Stärke 41:112–117.

    Article  Google Scholar 

  • Odibo, F.J.C. and S.K.C. Obi. 1988. Purification and characterization of a thermostable pullulanase from Thermoactinomyces thalpophilus. J. Ind. Microbiol. 3:343–350.

    Article  CAS  Google Scholar 

  • Plant, A.R., R.M. Clemens, H.W. Morgan, and R.M. Daniel. 1987. Active-site- and substrate-specificity of Thermoanaerobium Tok6-Bl pullulanase. Biochem. J. 246:537–541.

    PubMed  CAS  Google Scholar 

  • Pugsley, A.P., C. Chapon, and M. Schwartz. 1986. Extracellular pullulanase of Klebsiella pneumoniae is a lipoprotein. J. Bacteriol. 166:1083–1088.

    PubMed  CAS  Google Scholar 

  • Rogers, J.C. 1985. Two barley α-amylase gene families are regulated differently in aleurone cells. J. Biol Chem. 260:3731–3738.

    PubMed  CAS  Google Scholar 

  • Rosenberg, M. and D. Court. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 13:319–353.

    Article  PubMed  CAS  Google Scholar 

  • Saha, B.C. and J.G. Zeikus. 1989. Novel highly thermostable pullulanase from thermophiles. Trends Biotechnol. 7:234–239.

    Article  CAS  Google Scholar 

  • Saha, B.C., S.P. Mathupala, and J.G. Zeikus. 1988. Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulfuricum. Biochem. J. 252:343–348.

    PubMed  CAS  Google Scholar 

  • Saha, B.C., R. Lamed, C.-Y. Lee, S.P. Mathupala, and J.G. Zeikus. 1990. Characterization of an endo-acting amylopullulanase from Thermo-anaerobacter strain B6A. Appl Environ. Microbiol. 56:881–886.

    PubMed  CAS  Google Scholar 

  • Saha, B.C., G.-J. Shen, K.C. Srivastava, L.W. LeCureux, and J.G. Zeikus. 1989. New thermostable α-amylase-like pullulanase from thermophilic Bacillus sp. 3183. Enzyme Microb. Technol 11:760–764.

    Article  CAS  Google Scholar 

  • Sata, H., M. Umeda, C.-H. Kim, H. Taniguchi, and Y. Maruyama. 1989. Amylase-pullulanase enzyme produced by B. circulans F-2. Biochim. Biophys. Acta 991:388–394.

    Article  CAS  Google Scholar 

  • Schwarz, W.H., S. Schimming, K.P. Rücknagel, S. Burgschwaiger, G. Kreil, and W.L. Staudenbauer. 1988. Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum. Gene (Amst.) 63:23–30.

    Article  CAS  Google Scholar 

  • Sharon, N. and H. Lis. 1981. Glycoproteins: research booming on long-ignored, ubiquitous compounds. Chem. Eng. News 30:21–44.

    Article  Google Scholar 

  • Spreinat, A. and G. Antranikian. 1990. Purification and properties of a thermostable pullulanase from Clostridium thermosulfurogenes EMI which hydrolyses both α-1,6 and α-1,4-glycosidic linkages. Appl. Microbiol. Biotechnol 33:511–518.

    Article  CAS  Google Scholar 

  • Takano, T., M. Fukuda, M. Monma, S. Kobayashi, K. Kainuma, and K. Yamane. 1986. Molecular cloning, DNA nucleotide sequencing, and expression in Bacillus subtilis cells of the Bacillus macerons cyclodextrin glucanotransferase gene. J. Bacteriol. 166:1118–1122.

    PubMed  CAS  Google Scholar 

  • Takasaki, Y. 1987. Pullulanase-amylase complex enzyme from Bacillus subtilis. Agric. Biol. Chem. 51:9–16.

    Article  CAS  Google Scholar 

  • Takkinen, K., R.F. Pettersson, N. Kalkkinen, I. Palva, H. Söderlund, and L. Kääriäinen. 1983. Amino acid sequence of α-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258:1007–1013.

    PubMed  CAS  Google Scholar 

  • Vihinen, M. and P. Mäntsälä. 1990. Conserved residues of liquefying α-amylases are concentrated in the vicinity of active site. Biochem. Biophys. Res. Commun. 166:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Wiegel, J., L.G. Ljungdahl, and J.R. Rawson. 1979. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800–810.

    PubMed  CAS  Google Scholar 

  • Wu, H.C. 1987. Posttranslational modification and processing of membrane proteins in bacteria. In: Bacterial Outer Membrane as Model System, M. Inouye, ed., pp. 37–71. New York: Academic Press.

    Google Scholar 

  • Yang, M., A. Galizzi, and D. Henner. 1983. Nucleotide sequence of the amylase gene from Bacillus subtilis. Nucleic Acids Res. 11:237–249.

    Article  CAS  Google Scholar 

  • Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying α-amylases deduced from the DNA sequences. J. Biochem. 98:1147–1156.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Melasniemi, H. (1993). The α-Amylase-Pullulanase (apu) Gene from Clostridium thermohydrosulfuricum: Nucleotide Sequence and Expression in Escherichia coli . In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_32

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics