Skip to main content

Nucleotide Sequence of the Gene and Primary Structure of the Thermophilic β-Amylase from Clostridium thermosulfurogenes

  • Chapter
Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

  • 577 Accesses

Abstract

β-Amylase is an exo-type enzyme that hydro-lyzes starch by removing stepwise maltose of the β-anomeric configuration from the nonre-ducing end of the starch molecule. Although α-amylases, endo-type enzymes that hydro-lyze α-1,4 linkages of starch at random, are distributed in various kinds of organisms, β-amylases are known to be produced only by plants and certain bacteria. Extensive studies on α-amylases have revealed that α-amylases of diverse origins from mammalian to bacterial contain common well-conserved regions including active centers (Toda et al., 1982; Nakajima et al., 1986). Three-dimensional structures of α-amylases from Aspergillus oryzae and porcine have been determined at 3 and 2.9 Å resolution, respectively (Matsuura et al., 1984; Buisson et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buisson, G., E. Duee, R. Haser, and F. Payan. 1987. Three dimensional structure of porcine pancreatic α-amylàse at 2.9 Å resolution. Role of calcium in structure and activity. EMBO Journal 6:3909–3916.

    PubMed  CAS  Google Scholar 

  • Gouy, M. and C. Gautier. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10:7055–7074.

    Article  PubMed  CAS  Google Scholar 

  • Hyun, H.H. and J.G. Zeikus. 1985a. General biochemical characterization of thermostable extracellular β-amylase from Clostridium thermo-sulfurogenes. Appl. Environ. Microbiol. 49:1162–1167.

    PubMed  CAS  Google Scholar 

  • Hyun, H.H. and J.G. Zeikus. 1985b. Regulation and genetic enhancement of β-amylase production in Clostridium thermosulfurogenes. J. Bac-teriol. 164:1162–1170.

    CAS  Google Scholar 

  • Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151:389–409.

    Article  PubMed  CAS  Google Scholar 

  • Imanaka, T., M. Shibazaki, and M. Takagi. 1986. A new way of enhancing the thermostability of proteases. Nature (London) 324:695–697.

    Article  CAS  Google Scholar 

  • Inouye, M. and S. Halegoua. 1980. Secretion and membrane localization of proteins in Escherichia coli. Crit. Rev. Biochem. 7:339–371.

    Article  CAS  Google Scholar 

  • Kawazu, T., Y. Nakanishi, N. Uozumi, T. Sasaki, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1987. Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymuxa β-amylase. J. Bacteriol. 169:1564–1570.

    PubMed  CAS  Google Scholar 

  • Kitamoto, N., H. Yamagata, T. Kato, N. Tsukagoshi, and S. Udaka. 1988. Cloning and sequencing of the gene encoding thermophilic β-amylase of Clostridium thermosulfurogenes. J. Bacteriol. 170:5848–5854.

    PubMed  CAS  Google Scholar 

  • Konishi, H., T. Sato, H. Yamagata and S. Udaka. 1990. Efficient production of human α-amylase by a Bacillus brevis mutant. Appl. Microbiol. Biotechnol. 34:297–302.

    Article  PubMed  CAS  Google Scholar 

  • Kreis, M., M. Williamson, B. Buxton, J. Pywell, J. Hejgaard, and I. Svendson. 1987. Primary structure and differential expression of β-amylase in normal and mutant barleys. Eur. J. Biochem. 169:517–525.

    Article  PubMed  CAS  Google Scholar 

  • Kyte, J. and R.F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol Biol. 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Matsuura, Y., M. Kusunoki, W. Harada, and M. Kakudo. 1984. Structure and possible catalytic residues of Takα-amlylase A. J. Biochem. 95:697–702.

    PubMed  CAS  Google Scholar 

  • Matthews, B.W., H. Nicholson, and W.J. Becktel. 1987. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc. Natl. Acad. Sci. USA 84:6663–6667.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, J.R., C.L. Murray, and J.C. Rabino-witz. 1981. Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus β-lactamase gene. J. Biol. Chem. 256:11283–11291.

    PubMed  CAS  Google Scholar 

  • Melasniemi, H., M. Paloheimo, and L. Hemio. 1990. Nucleotide sequence of the α-amylase-pullulanase gene from Clostridium thermohydro-sulfuricum. J. Gen. Microbiol. 136:447–454.

    PubMed  CAS  Google Scholar 

  • Mikami, B., Y. Morita, and C. Fukazawa. 1988. Primary structure and function of β-amylase. Seikagaku 60:211–216 (in Japanese).

    PubMed  CAS  Google Scholar 

  • Mikami, B., Y. Morita, and C. Fukazawa. 1988. Primary structure and function of β-amylase. Seikagaku 60:211–216 (in Japanese).

    PubMed  CAS  Google Scholar 

  • Mizukami, M., H. Yamagota, K. Sakaguchi and S. Udaka 1992. Efficient production of thermostable Clostridium thermosulfurogenes β-amylase by Bacillus brevis. J. Ferment. Bioeng. 73:112–115.

    Article  CAS  Google Scholar 

  • Moran, C.P., N. Lang, S.F. LeGrice, G. Lee, M. Stephens, A.L. Sonenshein, J. Pero, and R. Losick. 1982. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Gen. 186:339–346.

    Article  CAS  Google Scholar 

  • Nakajima, R., T. Imanaka, and S. Aiba. 1986. Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23:355–360.

    Article  CAS  Google Scholar 

  • Nitta, Y., Y. Isoda, H. Toda, and F. Sekiyama. 1989. Identification of glutamic acid 186 affinity labeled by 2,3-epoxypropyl α-D-glucopyran-oside in soybean β-amylase. J. Biochem. 105:573–576.

    PubMed  CAS  Google Scholar 

  • Nomura, K., B. Mikami, and Y. Morita. 1987. Partial amino acid sequences around sulfhydryl groups of soybean β-amylase. J. Biochem. 102:341–349.

    PubMed  CAS  Google Scholar 

  • Ogasawara, N. 1985. Markedly unbiased codon usage in Bacillus subtilis. Gene (Amst.) 40:145–150.

    Article  CAS  Google Scholar 

  • Pantoliano, M.W., R.C. Ladner, P.N. Bryan, M.L. Rollence, J.F. Wood, and T.L. Poulos. 1987. Protein engineering of subtilisin BPN’: enhanced stabilization through the introduction of two cysteins to form a disulfide bond. Biochemistry 26:2077–2082.

    Article  PubMed  CAS  Google Scholar 

  • Perry, L.J. and R. Wetzel. 1984. Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science 226:555–557.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, M. and D. Court. 1979. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 13:319–353.

    Article  PubMed  CAS  Google Scholar 

  • Schink, B. and J.G. Zeikus. 1983. Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J. Gen. Microbiol. 129:1149–1158.

    CAS  Google Scholar 

  • Shen, G.-J., B.C. Saha, Y.-E. Lee, L. Bhatnagar, and J.G. Zeikus. 1988. Purification and characterization of a novel thermostable β-amylase from Clostridium thermosulphurogenes. Biochem. J. 254:835–840.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., N. Ito, T. Yuuki, H. Yamagata, and S. Udaka. 1989. Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J. Biol. Chem. 264:18933–18938.

    PubMed  CAS  Google Scholar 

  • Takagi, H., A. Miyauchi, K. Kadowaki, and S. Udaka. 1989. Potential use of Bacillus brevis HPD31 for the production of foreign proteins. Agric. Biol. Chem. 53:2279–2280.

    Article  CAS  Google Scholar 

  • Toda, H., K. Kondo, and K. Narita. 1982. The complete amino acid sequence of Taka-amylase A. Proc. Jpn. Acad. 58:208–212.

    Article  CAS  Google Scholar 

  • Uozumi, N., K. Sakurai, T. Sasaki, S. Takekawa, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1989. Single gene directs synthesis of a precursor protein with β- and α-amylase activities in Bacillus polymyxa. J. Bacteriol. 171:375–382.

    PubMed  CAS  Google Scholar 

  • Uozumi, N., T. Matsuda, N. Tsukagoshi, and S. Udaka. 1991. Structural and functional roles of cystein residues of Bacillus polymyxa β-amylase Biochemistry 30:4594–4599.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, H., K. Nakahama, Y. Suzuki, A. Kakinuma, N. Tsukagoshi, and S. Udaka. 1989. Use of Bacillus brevis for efficient synthesis and secretion of human epidermal growth factor. Proc. Natl. Acad. Sci. U.S.A. 86:3589–3593.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Yamagata, H., Udaka, S. (1993). Nucleotide Sequence of the Gene and Primary Structure of the Thermophilic β-Amylase from Clostridium thermosulfurogenes . In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics