Skip to main content

Gene Cloning, Organization, and Expression of θ-Toxin of Clostridium perfringens

  • Chapter
Genetics and Molecular Biology of Anaerobic Bacteria

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

  • 580 Accesses

Abstract

The dostridia produce a plethora of extracellular products. Some of these have been termed “toxins,” although not necessarily because they are lethal when administered to animals. Two toxins that are clearly toxic to animals are α-toxin and θ-toxin. Both toxins have been examined to a greater extent than most other extracellular products from Clostridium perfringens. The α-toxin (phospholipase C) has been termed the “lethal toxin” of C. perfringens; however, in the past commercial preparations of a-toxin prepared from C. perfringens were contaminated with θ-toxin (Smyth et al., 1975), which may have altered the results of many of these earlier studies. θ-toxin or perfringolysin O (PFO) is a thiol-activated cytolysin produced by C. perfringens that has been shown to be lethal to animals (Stevens et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernheimer, A.W. 1947. Comparative kinetics of hemolysis induced by bacterial and other hemolysins.J. Gen. Physiol. 30:337–353.

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi, S., M. Roth, A. Sziegoleit, and J.J. Tranum. 1984. Isolation and identification of two hemolytic forms of streptolysin-O. Infect. Immun. 46:394–400.

    PubMed  CAS  Google Scholar 

  • Bhakdi, S., J.J. Tranum, and A. Sziegoleit. 1985. Mechanism of membrane damage by streptolysin-O. Infect. Immun. 47:52–60.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R. and W.H. Habig. 1984. Mechanism of tetanolysin-induced membrane damage: studies with black lipid membranes.J. Bacteriol. 157:321–323.

    PubMed  CAS  Google Scholar 

  • Bremm, K.D., W. König, M. Thelestam, and J.E. Alouf. 1987. Modulation of granulocyte functions by bacterial exotoxin and endotoxins. Immunology 62:363–371.

    PubMed  CAS  Google Scholar 

  • Bremm, K.D., H.J. Brom, J.E. Alouf, W. König, B. Spur, A. Crea, and W. Peters. 1984. Generation of leukotrienes from human granulocytes by alveolysin from Bacillus alvei. Infect. Immun. 44:188–193.

    CAS  Google Scholar 

  • Bremm, K.D., W. König, P. Pfeiffer, I. Rauschen, K. Theobald, M. Thelestam, and J.E. Alouf. 1985. Effect of thiol-activated toxins (streptolysin O, alveolysin, and theta toxin) on the generation of leukotrienes and leukotriene-inducing and -metabolizing enzymes from human polymorphonuclear granulocytes. Infect. Immun. 50:844–851.

    PubMed  CAS  Google Scholar 

  • Buckingham, L. and J.L. Duncan. 1983. Approximate dimensions of membrane lesions produced by streptolysin S and streptolysin O. Biochim. Biophys. Acta 729:115–122.

    Article  PubMed  CAS  Google Scholar 

  • Canard, B. and S.T. Cole. 1989. Genome organization of the anaerobic pathogen Clostridium perfringens. Proc. Natl. Acad. Sci. USA 86:6676–6680.

    Article  PubMed  CAS  Google Scholar 

  • Cowell, J.L., K. Kim, and A.W. Bernheimer. 1978. Alteration by cereolysin of the structure of cholesterol-containing membranes. Biochem. Biophys. Acta 507:230–241.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, J.L. 1974. Characteristics of streptolysin O hemolysis: kinetics of hemoglobin and 86rubidium release. Infect. Immun. 9:1022–1027.

    PubMed  CAS  Google Scholar 

  • Gershfeld, N.L. 1978. Equilibrium studies of lecithin-cholesterol interactions. I. Stoichiometry of lecithin-cholesterol complexes in bulk systems. Biophys. J. 22:469–488.

    Article  PubMed  CAS  Google Scholar 

  • Haberkorn, R.A., R.G. Griffin, M.D. Meadows, and E. Oldfield. 1977. Deuterium nuclear magnetic resonance investigation of the dipalmatoyl lecithin-cholesterol-water system.J. Am. Chem. Soc. 99:7353–7355.

    Article  PubMed  CAS  Google Scholar 

  • Harris, R.W., P.J. Sims, and R.K. Tweten. 1991a. Kinetic aspects of the aggregation of Clostridium perfringens theta toxin on erythrocyte membranes: a fluorescence energy transfer study.J. Biol. Chem. 266:6936–6941.

    PubMed  CAS  Google Scholar 

  • Harris, R.W., P.J. Sims and R.K. Tweten. 1991b. Evidence that Clostridium perfringens θ-toxin induces the colloid osmotic lysis of erythrocytes. Infect. Immun. 59:2499–2501.

    PubMed  CAS  Google Scholar 

  • Hugo, F., J. Reichwein, M. Arvand, S. Krämer, and S. Bhakdi. 1986. Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infect. Immun. 54:641–645.

    PubMed  CAS  Google Scholar 

  • Imagawa, T., T. Tatsuki, Y. Higashi, and T. Amano. 1981. Complementation characteristics of newly isolated mutants from two groups of strains of Clostridium perfringens. Biken J. 24:13–21.

    CAS  Google Scholar 

  • Iwamoto, M., Y. Ohno-Iwashita, and S. Ando. 1987. Role of the essential thiol group in the thiol-activated cytolysin from Clostridium perfringens. Eur. J. BioChem. 167:425–430.

    Article  PubMed  CAS  Google Scholar 

  • Jocelyn, P.C. 1972. Biochemistry of the SH Group. The Occurrence, Chemical Properties, Metabolism and Biological Function of Thiols and Disulfides. London: Academic Press.

    Google Scholar 

  • Kehoe, M. and K.N. Timmis. 1984. Cloning and expression in Escherichia coli of the streptolysin O determinant from Streptococcus pyogenes: characterization of the cloned streptolysin O determinant and demonstration of the absence of substantial homology with determinants of other thiol-activated toxins. Infect. Immun. 43:804–810.

    PubMed  CAS  Google Scholar 

  • Kehoe, M.A., L. Miller, J.A. Walker, and G.J. Boulnois. 1987. Nucleotide sequence of the streptolysin O (SLO) gene: stluctural homologies between SLO and other membrane-damaging, thiol-activated toxins. Infect. Immun. 55:3228–3232.

    PubMed  CAS  Google Scholar 

  • Mitsui, K., T. Sekiya, S. Okamura, Y. Nozawa, and J. Hase. 1979. Ring formation of perfring-olysin O as revealed by negative stain electron microscopy. Biochim. Biophys. Acta 558:307–313.

    Article  PubMed  CAS  Google Scholar 

  • Niedermeyer, W. 1985. Interaction of streptolysin-O with biomembranes: kinetic and morphological studies on erythrocyte membranes. Toxicon 23:425–439.

    Article  PubMed  CAS  Google Scholar 

  • Perlman, D. and H.O. Halvorson. 1983. A putative signal peptidase recognition site and sequence in eucaryotic and prokaryotic signal peptides.J. Mol. Biol. 167:391–409.

    Article  PubMed  CAS  Google Scholar 

  • Pinkney, M., E. Beachey, and M. Kehoe. 1989. The thiol-activated toxin streptolysin O does not require a thiol group for activity. Infect. Immun. 57:2553–2558.

    PubMed  CAS  Google Scholar 

  • Prigent, D. and J.E. Alouf. 1976. Interaction of streptolysin O with sterols. Biochim. Biophys, Acta 433:422–428.

    Google Scholar 

  • Robb-Smith, A.H.T. 1945. Tissue changes induced by Cl. welchii type A filtrates. Lancet ii:362–368.

    Article  Google Scholar 

  • Rottem, S., R.M. Cole, W.H. Habig, M.F. Barile, and M.C. Hardegree. 1982. Strucnual characteristics of tetanolysin and its binding to lipid vesicles.J. Bacteriol. 152:888–892.

    PubMed  CAS  Google Scholar 

  • Saunders, K.F., T.J. Mitchell, J.A. Walker, P.W. Andrew, and G.J. Boulnois. 1989. Pneumolysis the thiol-activated toxin of Streptococcus pneumoniae, does not require a thiol group for in vitro activity. Infect. Immun. 57:2547–2552.

    PubMed  CAS  Google Scholar 

  • Shimizu, T., A. Okabe, J. Minami, and H. Hayashi. 1991. An upstream regulatory sequence stimulates expression of the perfring-olysin O gene of Clostridium perfringens. Infect. Immun. 59:137–142.

    CAS  Google Scholar 

  • Smyth, C.J., J.H. Freer, and J.P. Arbuthnot. 1975. Interaction of Clostridium perfringens theta-haemolysin, a contaminant of commercial phospholipase C, with erythrocyte ghost membranes and lipid dispersions. A morphological study. Biochim. Biophys. Acta 382:479–493.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, D.L., J. Mitten, and C. Henry. 1987. Effects of alpha and theta toxins from Clostridium perfringens on human polymorphonuclear leukocytes.J. Infect. Dis. 156:324–333.

    Article  PubMed  CAS  Google Scholar 

  • Tweten, R.K. 1988a Cloning and expression in Escherichia coli of the perfringolysin O (thetatoxin) gene from Clostridium perfringens and characterization of the gene product. Infect. Immun. 56:3228–3234.

    PubMed  CAS  Google Scholar 

  • Tweten, R.K. 1988b. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysis Infect. Immun. 56:3235–3240.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tweten, R.K. (1993). Gene Cloning, Organization, and Expression of θ-Toxin of Clostridium perfringens . In: Sebald, M. (eds) Genetics and Molecular Biology of Anaerobic Bacteria. Brock/Springer Series in Contemporary Bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4615-7087-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7087-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4615-7089-9

  • Online ISBN: 978-1-4615-7087-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics