Skip to main content

Abstract

“Fermentation” is a term that has been used to refer to various processes involving limited biochemical changes brought about by microorganisms or their enzymes. Prescott and Dunn (1957) reviewed the changes in meaning which the term has undergone since its derivation from the Latin word for “boil,” which was used to describe the fermentation of wine. Milk fermentation can be defined as any modification of the chemical or physical properties of milk or dairy products resulting from the activity of microorganisms or their enzymes. This activity can involve metabolizing cells, extracellular enzymes, or intracellular enzymes released after cell lysis. Milk fermentations contribute to desirable flavors and textures in products such as cheese and yogurt or result in spoiled and degraded products. To ensure development of desired fermentations, microbial cultures with known properties are added to milk or dairy product substrates. Fermentations initiated by natural milk contaminants are often inconsistent and consequently are undesirable for industrial purposes. The unique organoleptic properties of fermented dairy products result from the highly specific metabolic activity of starter culture bacteria in converting lactose to lactic acid and from the curd-forming properties of the casein-micelle complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. M., Barach, J. T. and Speck, M. L. 1975. Heat resistant proteases produced in milk by psychrotrophic bacteria of dairy origin. J. Dairy Sci. 58, 828–834.

    CAS  Google Scholar 

  • Adams, D. M. and Brawley, T. G. 1981. Heat resistant bacterial lipases and ultra-high temperature sterilization of dairy products. J. Dairy Sci. 64, 1951–1957.

    CAS  Google Scholar 

  • Alford, J. A. and Frazier, W. C. 1950. Occurrence of micrococci in Cheddar cheese made from raw and from pasteurized milk. J. Dairy Sci. 33, 107–114.

    Google Scholar 

  • Alichanidis, E. and Andrews, A. T. 1977. Some properties of the extracellular protease produced by the psychrotrophic bacterium Pseudomonas fluorescens strain AR-11. Biochim. Biophys. Acta 485, 424–433.

    CAS  Google Scholar 

  • Alifax, R. and Chevalier, R. 1962. Studies on nisinase produced by Streptococcus thermo-philus. J. Dairy Res. 29, 233–240.

    CAS  Google Scholar 

  • Alkanhal, H. A., Frank, J. F. and Christen, G. L. 1985. Microbial protease and phospholi-pase C stimulate lipolysis of washed cream. J. Dairy Sci. 68, 3162–317.

    CAS  Google Scholar 

  • Alm, L. 1982. Effect of fermentation on l(+) and d(-) lactic acid in milk. J. Dairy Sci. 65, 515–520.

    CAS  Google Scholar 

  • Anders, R. F., Hogg, D. M. and Jago, G. R. 1970A. Formation of hydrogen peroxide by Group N streptococci and its effect on their growth and metabolism. Appl. Microbiol. 19, 608–612.

    CAS  Google Scholar 

  • Anders, R. F., Jonas, H. A. and Jago, G. R. 1970B. A survey of the lactate dehydrogenase activities in Group N streptococci. Aust. J. Dairy Technol. 5, 73–76.

    Google Scholar 

  • Anderson, R. 1980. Microbial lipolysis at low temperatures. AppL Environ. Microbiol. 39, 36–40.

    Google Scholar 

  • Anderson, I. and Leesment, H. 1970. The influence of manganese on the activity of aroma bacteria in starters. XVIII Int. Dairy Congr. 1E, 114.

    Google Scholar 

  • Anema, P. J. 1964. Purification and properties of β-galactosidase of Bacillus subtilis. Biochim. Biophys. Acta 89, 495–502.

    CAS  Google Scholar 

  • Arbuckle, W. S. 1970. Disposal of dairy wastes. In: Byproducts from Milk, B. H. Webb, and E. O. Whittier (Editors). AVI Publishing Co., Westport, Conn., pp. 405–421.

    Google Scholar 

  • Argyls, P. J., Mathison, G. E. and Chandan, R. C. 1976. Production of cell-bound proteinase by Lactobacillus bulgaricus and its location in the bacterial cell. J. Appl. Bacteriol. 41, 175–184.

    Google Scholar 

  • Baldwin, A. E. 1868. Improved process of treating milk to obtain useful products. U.S. Patent 78,640.

    Google Scholar 

  • Baribo, L. E. and Foster, E. M. 1951. The production of a growth inhibitor by lactic streptococci. J. Dairy Sci. 34, 1136–1144.

    CAS  Google Scholar 

  • Baribo, L. E. and Foster, E. M. 1952. The intracellular proteinases of certain organisms from cheese and their relationship to the proteinases in cheese. J. Dairy Sci. 35, 149–160.

    CAS  Google Scholar 

  • Barker, H. A., Smyth, R. D., Weissbach, H., Munch-Peterson, A., Toohey, J. I., Ladd, J. N., Volcani, B. E. and Marilyn Wilson, R. 1960A. Assay, purification, and properties of adenylcobamide coenzyme. J. Biol Chem. 235, 181–190.

    CAS  Google Scholar 

  • Barker, H. A., Smyth, R. D., Weissbach, H., Toohey, J. I., Ladd, J. N. and Volcani, B. E. 1960B. Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. J. Biol. Chem. 235, 480–488.

    CAS  Google Scholar 

  • Bauchop, T. and Elsdon, S. R. 1960. The growth of microorganisms in relation to their energy supply. J. Gen. Microbiol. 23, 457–469.

    CAS  Google Scholar 

  • Baumann, D. P. and Reinbold, G. W. 1964. Preservation of lactic cultures. J. Dairy Sci. (abstract). 47, 674.

    Google Scholar 

  • Baumann, D. P. and Reinbold, G. W. 1966. Freezing of lactic cultures. J. Dairy Sci. 49, 259–264.

    CAS  Google Scholar 

  • Bayer, K. 1983. Trace element supplementation of cheese whey for the production of feed yeast. J. Dairy Sci. 66, 214–220.

    CAS  Google Scholar 

  • Beach, A. S. 1952. An agar diffusion method for the assay of nisin. J. Gen. Microbiol. 6, 60–63.

    CAS  Google Scholar 

  • Beattie, S. E. and Torrey, G. S. 1984. Volatile compounds produced by Brevibacterium linens inhibit mold spore germination (abstract). J. Dairy Sci. 67 (suppl. 1), 84.

    Google Scholar 

  • Berry, E. C. and Bullerman, L. B. 1966. Use of cheese whey for vitamin B12 production. II. Cobalt, precursor, and aeration limits. Appl. Microbiol. 14, 356–357.

    CAS  Google Scholar 

  • Bills, D. D., Morgan, M. E., Reddy, L. M. and Day, E. A. 1965. Identification of compounds responsible for fruit flavor defect of experimental Cheddar cheeses. J. Dairy Sci. 48, 1168–1170.

    CAS  Google Scholar 

  • Bissett, D. L. and Anderson, R. L. 1973. Lactose and D-galactose metabolism in Staphylococcus aureus: Pathway of D-galactose 6-phosphate degradation. Biochem. Biophys. Res. Commun. 52, 641–645.

    CAS  Google Scholar 

  • Bissett, D. L. and Anderson, R. L. 1974A. Genetic evidence for the physiological significance of the D-tagatose 6-phosphate pathway of lactose and D-galactose degradation in Staphylococcus aureus. J. Bacteriol. 119, 698–704.

    CAS  Google Scholar 

  • Bissett, D. L. and Anderson, R. L. 1974B. Lactose and D-galactose metabolism in Group N streptococci: Presence of enzymes for both the D-glactose 1-phosphate and d-tagatose 6-phosphate pathways. J. Bacteriol. 117, 318–320.

    CAS  Google Scholar 

  • Borglum, G. B. and Sternberg, M. Z. 1972. Properties of a fungal lactase. J. Food Sci. 37, 619–624.

    CAS  Google Scholar 

  • Bottazzi, V. 1962. Proteolytic activity of some strains of thermophilic lactobacilli. Proc. 16th Int. Dairy Congr. B, 522.

    Google Scholar 

  • Brandsaeter, E. and Nelson, F. E. 1956A. Proteolysis by Lactobacillus casei. I. Proteinase activity. J. Bacteriol. 72, 68–72.

    CAS  Google Scholar 

  • Brandsaeter, E. and Nelson, F. E. 1956B. Proteolysis by Lactobacillus casei. II. Peptidase activity. J. Bacteriol. 72, 73–78.

    CAS  Google Scholar 

  • Brown, A. T. and Wittenberger, C. L. 1972. Fructose 1,6 diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: Purification and regulatory properties. J. Bacteriol. 110, 604–615.

    CAS  Google Scholar 

  • Buchanan, R. E. and Gibbons, N. E. 1974. Bergey’s Manual of Determinative Bacteriology, 8th ed. Williams and Wilkins Co., Baltimore.

    Google Scholar 

  • Bullerman, L. B. and Berry, E. C. 1966A. Use of cheese whey for vitamin B12 production. I. Whey solids and yeast extract levels. Appl. Microbiol. 14, 353–355.

    CAS  Google Scholar 

  • Bullerman, L. B. and Berry, E. C. 1966B. Use of cheese whey for vitamin B12 production. III. Growth studies and dry-weight activity. Appl. Microbiol. 14, 358–360.

    CAS  Google Scholar 

  • Burton, L. V. 1937A. By products of milk: Methods of conversion which will help solve the burdensome surplus-milk problem. Part I. Food Ind. 9, 571–575, 617.

    Google Scholar 

  • Burton, L. V. 1937B. Part II. Conversion of calcium lactate to lactic acid and production of whey powders. Food Ind. 9, 634–636.

    Google Scholar 

  • Burvall, A., Asp, N. G. and Dahlqvist, A. 1979. Oligosaccharide formation during hydrolysis of lactose with Saccharomyces lactis lactase (Maxilact): Part 1. Quantitative aspects. Food Chem. 4, 243–250.

    CAS  Google Scholar 

  • Byers, B. R. and Arveneaux, J. E. L. 1971. Microbial transport and utilization of iron. In:Microorganisms and Minerals. E. D. Weinberg (Editor). Marcel Dekker, New York, pp. 215–249.

    Google Scholar 

  • Calmes, R. 1978. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: Lactose transport. Infect. Immun. 19, 934–942.

    CAS  Google Scholar 

  • Cardini, C. E. and Leloir, L. F. 1952. Enzymic phosphorylation of galactosamine and galactose. Arch. Biochem. Biophys. 45, 55–64.

    Google Scholar 

  • Castberg, H. B. and Morris, H. A. 1976. Degradation of milk proteins by enzymes from lactic acid bacteria used in cheesemaking: A review. Milchwissenschaft 31, 85–90.

    CAS  Google Scholar 

  • Chassy, B. M. and Thompson, J. 1983. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and β-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. J. Bacteriol. 154, 1195–1203.

    CAS  Google Scholar 

  • Cheeseman, G. C. and Berridge, N. J. 1957. An improved method of preparing nisin. Biochem. J. 65, 603–608.

    CAS  Google Scholar 

  • Cheeseman, G. C. and Berridge, N. J. 1959. Observations on the molecular weight and chemical composition of nisin A. Biochem. J. 71, 185–194.

    CAS  Google Scholar 

  • Cheung, B. A. and Westhoff, D. C. 1983. Isolation and identification of ropy bacteria in raw milk. J. Dairy Sci. 66, 1825–1834.

    CAS  Google Scholar 

  • Choudhery, A. K. and Mikolajcik, E. M. 1971. Activity of Bacillus cereus proteinases in milk. J. Dairy Sci. 53, 363–366.

    Google Scholar 

  • Chrisope, G. L. and Marshall, R. T. 1976. Combined action of lipase and phospholipase C on a model fat globule emulsion and raw milk. J. Dairy Sci. 59, 2024–2030.

    CAS  Google Scholar 

  • Cogan, T. M. 1980. Mesophilic lactic streptococci: A review. Lait 60, 397–425. (French)

    CAS  Google Scholar 

  • Cogan, T. M. 1981. Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis subsp. diacetylactis. J. Dairy Res. 48, 489–495.

    CAS  Google Scholar 

  • Cogan, T. M., Fitzgerald, R. J. and Doonan, S. 1984. Acetolactate synthase of Leuconostoe lactis and its regulation of acetoin production. J. Dairy Res. 51, 597–604.

    CAS  Google Scholar 

  • Cogan, T. M., O’Dowd, M. and Mellerick, D. 1981. Effect of pH and sugar on acetoin production from citrate by Leuconostoc lactis. Appl. Environ. Microbiol. 41, 1–8.

    CAS  Google Scholar 

  • Coghill, D. 1979. The ripening of blue vein cheese: A review. Aust. J. Dairy Technol. 34, 72–75.

    CAS  Google Scholar 

  • Collins, E. B. 1961. Domination among strains of lactic streptococci with attention to antibiotic production. Appl. Microbiol. 9, 200–205.

    CAS  Google Scholar 

  • Collins, E. B. 1972. Biosynthesis of flavor compounds by microorganisms. J. Dairy Sci. 55, 1022–1028.

    CAS  Google Scholar 

  • Cords, B. R. and McKay, L. L. 1974. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants. J. Bacteriol. 119, 830–839.

    CAS  Google Scholar 

  • Corminboeuf, F. G. 1933A. Historical considerations of the acidic fermentation in milk and of its microflora. Part I. Sci. Agr. 13, 466–470. (French)

    CAS  Google Scholar 

  • Corminboeuf, F. G. 1933B. Historical considerations of the acidic fermentation in milk and on its microflora. Part II. Sci. Agr. 13, 596–607. (French)

    Google Scholar 

  • Cousin, M. A. 1980. Converting food processing wastes into food or feed through microbial fermentation. Ann. Rep. Ferment. Proc. 4, 31–65.

    CAS  Google Scholar 

  • Cousin, M. A. 1982. Presence and activity of phychrotrophic microorganisms in milk and dairy products: A review. J. Food Prot. 45, 172–207.

    Google Scholar 

  • Cousin, M. A. and Marth, E. H. 1977A. Changes in milk protein caused by psychrotrophic bacteria. Milchwissenschaft 32, 337–341.

    Google Scholar 

  • Cousin, M. A. and Marth, E. H. 1977B. Psychrotrophic bacteria cause changes in stability of milk to coagulation by rennet or heat. J. Dairy Sci. 60, 1042–1047.

    CAS  Google Scholar 

  • Cousin, M. A. and Marth, E. H. 1977C. Lactic acid production by Streptococcus lactis and Streptococcus cremoris in milk precultured with psychrotrophic bacteria. J. Food Prot. 40, 406–410.

    CAS  Google Scholar 

  • Cousin, M. A. and Marth, E. H. 1977D. Lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus in milk precultured with psychrotrophic bacteria. J. Food Prot. 40, 475–479.

    CAS  Google Scholar 

  • Cowman, R. A. and Speck, M. L. 1965. Ultra-low temperature storage of lactic streptococci. J. Dairy Sci. 48, 1531–1532.

    CAS  Google Scholar 

  • Crow, F. L. and Pritchard, G. C. 1977. Fructose 1,6 diphosphate activated lactate dehydrogenase from Streptococcus lactis; Kinetic properties and factors affecting activation. J. Bacteriol. 131, 82–91.

    CAS  Google Scholar 

  • Crow, V. L. and Thomas, T. D. 1984. Properties of a Streptococcus lactis strain that ferments lactose slowly. J. Bacteriol. 157, 28–34.

    CAS  Google Scholar 

  • Czeszar, J. and Pulay, G. 1956. Standardization of methods to analyze milk in France. 14th Int. Dairy Congr., Proc. 5(2), 423–427. (French)

    Google Scholar 

  • Czulak, J. 1960. Growth of Penicillium roqueforti on a whey medium. Aust. J. Dairy Technol. 15, 118–120.

    Google Scholar 

  • Dacre, J. C. 1953. Cheddar cheese flavor and its relation to tyramine production by lactic acid bacteria. J. Dairy Res. 20, 217–223.

    CAS  Google Scholar 

  • Daly, C., Sandine, W. E. and Elliker, P. R. 1972. Interactions of food starter cultures and food-borne pathogens: Streptococcus diacetilactis versus food pathogens. J. Milk Food Technol. 35, 349–357.

    CAS  Google Scholar 

  • Davidov, R. B. and Rykshina, Z. P. 1961. An inexpensive source of vitamin B12 for use as animal feed (abstract). Milchwissenschaft 16, 434. (German)

    Google Scholar 

  • Davies, R. 1942A. Studies on the acetone-butyl alcohol fermentation. II. Intermediates in the fermentation of glucose by Clostridium acetobutylicum. Biochem. J. 36, 582–596.

    CAS  Google Scholar 

  • Davies, R. 1942B. Studies on the acetone-butyl alcohol fermentation. III. Potassium as an essential factor in the fermentation of maize meal by Clostridum acetobutylicum (BY). Biochem. J. 36, 596–599.

    Google Scholar 

  • Davies, R. 1943. Studies on the acetone-butanol fermentation. IV. Acetonacetic acid decarboxylase of Clostridium acetobutylicum (BY). Biochem. J. 37, 230–238.

    CAS  Google Scholar 

  • Davies, R. and Stephenson, M. 1941. Studies on the acetone-butyl alcohol fermentation. I. Nutritional and other factors involved in the preparation of active suspensions of Clostridium acetobutylicum (Weizmann). Biochem. J. 35, 1320–1331.

    CAS  Google Scholar 

  • Deeth, H. C. and Tamime, A. Y. 1981. Yogurt: Nutritive and therapeutic aspects. J. Food Prot. 44, 78–86.

    CAS  Google Scholar 

  • DeKlerk, H. C. and Coetzer, J. N. 1961. Antibiosis among lactobacilli. Nature 192, 340–341.

    CAS  Google Scholar 

  • Demmler, G. 1950. Growth of yeast in whey using the Waldhof procedure. Milchwissenschaft 5, 11–17. (German)

    CAS  Google Scholar 

  • Denis, F. and Veillet-Poncet, L. 1980. Characteristics of the proteolytic enzymatic system of Aeromonas hydrophilia LP 50. Lait 60, 238–253. (French)

    CAS  Google Scholar 

  • Desmazeau, M. J. and Gripon, J. C. 1977. General mechanism of protein breakdown during cheese ripening. Milchwissenschaft 32, 731–734.

    Google Scholar 

  • De Vries, W., Aleem, M. T. H. and Hemri-Wagner, A. 1974. The functioning of cytachrome b in the election transport to fumerate in Propionbacterium freudenreichii and Propionbacterium pentosaceum. Arch. Microbiol. 112, 271–276.

    Google Scholar 

  • Dills, S. S., Apperson, A., Schmidt, M. R. and Sater, M. H., Jr. 1980. Carbohydrate transport in bacteria. Microbiol. Rev. 44, 385–418.

    CAS  Google Scholar 

  • Doelle, H. W. 1975. Bacterial Metabolism. Academic Press, New York.

    Google Scholar 

  • Dolin, M. I. 1955. The DPNH-oxidizing enzymes of Streptococcus faecalis. II. The enzymes utilizing oxygen, cytochrome c, peroxide and 2,6-ichlorophenol or ferricyanide as oxidants. Arch. Biochem. Biophys. 55, 415–435.

    CAS  Google Scholar 

  • Dumont, J. P., Roger, S. and Adda, J. 1975. Identification of a nitrogenous heterocyclic compound responsible for a potato-like off-flavor in Gruyere de Comte. Lait 55, 479–487.

    CAS  Google Scholar 

  • Dunican, L. K. and Seeley, H. W., Jr. 1965. Extracellular polysaccharide synthesis by members of the genus Lactobacillus: Conditions for formation and accumulation. J. Gen. Microbiol. 40, 297–308.

    CAS  Google Scholar 

  • Dyachenko, P. F., Shchedushnov, E. V. and Nassib, T. G. 1970. Characteristics of proteolytic activity of thermophilic lactic acid bacteria used for cheesemaking. XVIII Int. Dairy Congr. 1E, 274.

    Google Scholar 

  • Eastoe, J. E. and Long, J. E. 1959. The effect of nisin on the growth of cells and spores of Clostridium welchii in gelatine. J. Appl. Bacteriol. 22, 1–7.

    CAS  Google Scholar 

  • Efstathiou, J. P. and McKay, L. L. 1976. Plasmids in Streptococcus lactis: Evidence that lactose metabolism and proteinase activity are plasmid linked. Appl. Environ. Microbiol. 32, 38–44.

    CAS  Google Scholar 

  • Egan, J. B. and Morse, M. L. 1966. Carbohydrate transport in Staphylococcus aureus. III. Studies in the transport process. Biochim. Biophys. Acta 112, 63–73.

    CAS  Google Scholar 

  • Eggimann, B. and Bachmann, M. 1980. Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl. Environ. Microbiol. 40, 876–882.

    CAS  Google Scholar 

  • El Soda, M., Bergere, J. L. and Desmazeaud, M. J. 1978A. Detection and localization of peptide hydrolases in Lactobacillus casei. J. Dairy Res. 5, 519–524.

    Google Scholar 

  • El Soda, M., Desmazeaud, M. J. and Bergere, J. L. 1978B. Peptide hydrolases of Lactobacillus casei: Isolation and general properties of various peptidase activities. J. Dairy Res. 45, 445–455.

    Google Scholar 

  • Emmons, D. B., and Tuckey, S. L. 1967. Cottage Cheese and Other Cultured Milk Products. Pfizer, Inc., New York.

    Google Scholar 

  • Exterkate, F. A. 1975. An introductory study of the proteolytic system of Streptococcus cremoris strain HP. Neth. Milk Dairy J. 29, 303–318.

    CAS  Google Scholar 

  • Exterkate, F. A. 1979. Accumulation of proteinase in the cell wall of Streptococcus cremoris strain AM, and regulation of its production. Arch. Microbiol. 120, 247–254.

    CAS  Google Scholar 

  • Exterkate, F. A. 1984. Location of peptidases outside and inside the membrane of Streptococcus cremoris. Appl. Environ. Microbiol. 47, 177–183.

    CAS  Google Scholar 

  • Farrow, J. A. E. 1980. Lactose hydrolysing enzymes in Streptococcus lactis and Streptococcus cremoris and also in some other species of streptococci. J. Appl. Bacteriol. 49, 493–503.

    CAS  Google Scholar 

  • Farrow, J. A. E., and Garvie, E. 1979. Strains of Streptococcus lactis which contain ß-galactosidase. J. Dairy Res. 46, 121–125.

    Google Scholar 

  • Fitz-Gerald, C. H. and Deeth, H. C. 1983. Factors influencing lipolysis by skim milk cultures of some psychrotrophic microorganisms. Aust J. Dairy Technol. 38, 97–101.

    CAS  Google Scholar 

  • Foissy, H. 1974. Examination of Brevibacterium linens by an electrophoretic zymogram technique. J. Gen. Microbiol. 80, 197–207.

    CAS  Google Scholar 

  • Foissy, H. 1978A. Aminopeptidase from Brevibacterium linens: Production and purification. Milchwissenschaft 33, 221–223.

    CAS  Google Scholar 

  • Foissy, H. 1978B. Some properties of aminopeptidase from Brevibacterium linens. FEMS Microbiol. Lett. 3, 207–210.

    CAS  Google Scholar 

  • Foissy, H. 1978C. Aminopeptidase from Brevibacterium linens: Activation and inhibition. Z. Lebensm. Unters.-Forsch. 166, 164–166.

    CAS  Google Scholar 

  • Fordyce, A. M., Crow, V. L. and Thomas, T. D. 1984. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Appl. Environ. Microbiol. 48, 332–337.

    CAS  Google Scholar 

  • Forsen, R. and Haiva, V. 1981. Induction of stable slime-forming and mucoid states by p-fluorophenylalanine in lactic streptococci. FEMS Microbiol. Lett. 12, 409–413.

    CAS  Google Scholar 

  • Forsen, R., Raunio, V. and Myllymaa, R. 1973. Studies on slime-forming Group N streptococcus strains. Acta U. Ouluensis, Series A12 (Biochemica No. 3), 4–19.

    Google Scholar 

  • Foster, E. M. 1962. Symposium on lactic starter cultures. VI. Culture preservation. J. Dairy Sci. 45, 1290–1294.

    Google Scholar 

  • Fox, P. F. 1981. Proteinases in dairy technology. Neth. Milk Dairy J. 35, 233–253.

    CAS  Google Scholar 

  • Fox, P. F. and Stephaniak, L. 1983. Isolation and some properties of extracellular heat- stable lipases from Pseudomonas fluorescens strain AFT 36. J. Dairy Res. 50, 77–89.

    CAS  Google Scholar 

  • Frank, J. F., Marth, E. H. and Olson, N. F. 1977. Survival of enteropathogenic and nonpathogenic Escherichia coli dining the manufacture of Camembert cheese. J. Food Prot. 40, 835–842.

    Google Scholar 

  • Frank, J. F., Marth, E. H. and Olson, N. F. 1978. Behavior of enteropathogenic Escherichia during manufacture and ripening of brick cheese. J. Food Prot. 41, 111–115.

    Google Scholar 

  • Frank, J. F. and Somkuti, G. A. 1979. General properties of beta-galactosidase of Xan- thomonas campestris. Appl. Environ. Microbiol. 38, 554–556.

    CAS  Google Scholar 

  • Friedmann, R. and Epstein, C. 1951. The assay of the antibiotic nisin by means of a reductase (resazurin) test. J. Gen. Microbiol. 5, 830–839.

    CAS  Google Scholar 

  • Friend, B. A. and Shahani, K. M. 1979. Whey fermentation. N.Z. J. Dairy Sci. Technol. 14, 143–152.

    CAS  Google Scholar 

  • Fritz, A. 1960A. Determination of the strength of dairy wastes. Part I. Milchwissenschaft 15, 237–242. (German)

    Google Scholar 

  • Fritz, A. 1960B. Determination of the strength of dairy wastes. Part II. Milchwissenschaft 15, 609–612. (German)

    Google Scholar 

  • Fryer, T. F., Reiter, B. and Lawrence, R. C. 1967. Lipolytic activity of lactic acid bacteria. J. Dairy Sci. 50, 388–389.

    CAS  Google Scholar 

  • Galesloot, T. E. 1956. Lactic acid bacteria which destroy the antibioticum (nisin) of S. lactis. Ned Melk. Zuiveltijdschr. 10, 143–154. (Dutch)

    CAS  Google Scholar 

  • Galesloot, T. E. 1957. The effect of nisin upon the growth of bacteria which are concerned or possibly concerned in bacterial processes in cheese and processed cheese. Ned Melk. Zuiveltijdschr. 11, 58–73. (Dutch)

    CAS  Google Scholar 

  • Galesloot, T. E. and Pette, J. W. 1956. The estimation of the nisin content of antibiotic starters and cultures and of cheese made by means of antibiotic starters. Ned Melk. Zuiveltijdschr. 10, 137–142. (Dutch)

    CAS  Google Scholar 

  • Garey, J. C. and Downing, J. F. 1951. Microbiological synthesis of vitamin B12 by a species of Streptomyces. (abstract). 119th Meeting Am. Chem. Soc, p. 22A.

    Google Scholar 

  • Garibaldi, J. A. 1971. Influence of temperature on the iron metabolism of a fluorescent pseudomonad. J. Bacteriol. 105, 1036–1038.

    CAS  Google Scholar 

  • Garibaldi, J. A., Ijichi, K., Lewis, J. C. and McGinnis, J. 1951. Fermentation process for production of vitamin B12. U.S. Patent 2,576,932.

    Google Scholar 

  • Garm, O., Lunaas, T. and Velle, W. 1963. The causes of bitter flavour in milk. Meieriposten 52, 253–258.

    Google Scholar 

  • Garvie, E. 1.1978. Lactate dehydrogenase of Streptococcus thermophilus. J. Dairy Res. 45, 515–518.

    CAS  Google Scholar 

  • Garvie, E. I. 1980. Bacterial lactate dehydrogenases. Microbiol. Rev. 44, 106–139.

    CAS  Google Scholar 

  • Gibson, C. A., Landerkin, G. B. and Morse, P. M. 1966. Effects of additives on the survival of lactic streptococci in frozen storage. Appl. Microbiol. 14, 665–669.

    CAS  Google Scholar 

  • Gilliland, S. E. and Speck, M. L. 1972. Interactions of food starter cultures and foodborne pathogens: Lactic streptococci versus staphylococci and salmonellae. J. Milk Food Technol. 35, 307–310.

    CAS  Google Scholar 

  • Glenn, A. R. 1976. Production of extracellular proteins by bacteria. Ann. Rev. Microbiol. 30, 41–62.

    CAS  Google Scholar 

  • Goel, M. C., Kulshrestha, D. C., Marth, E. H., Francis, D. W., Bradshaw, J. G. and Read, R. B., Jr. 1971. Fate of conforms in yogurt, buttermilk, sour cream, and cottage cheese during refrigerated storage. J. Milk Food Technol. 34, 54–58.

    Google Scholar 

  • Goepfert, J. M., Olson, N. F. and Marth, E. H. 1968. Behavior of Salmonella typhimurium during manufacture and curing of Cheddar cheese. Appl. Microbiol, 16, 862–866.

    CAS  Google Scholar 

  • Goncalves, J. A. and Castillo, F. J. 1982. Partial purification and characterization of ß-D-galactosidase from Kluyveromyces marxianus. J. Dairy Sci. 65, 2088–2094.

    CAS  Google Scholar 

  • Gottschalk, G. 1979. Bacterial Metabolism. Springer-Verlag, New York.

    Google Scholar 

  • Gotz, F., Sedewitz, B. and Elstner, E. F. 1980. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions. Arch. Microbiol. 125, 209–214.

    CAS  Google Scholar 

  • Grecz, N., Wagenaar, R. O. and Dack, G. M. 1959. Inhibition of Clostridium botulinum by culture filtrates of Brevibacterium linens. J. Bacteriol. 78, 506–510.

    CAS  Google Scholar 

  • Greene, V. W. and Jezeski, J. J. 1957A. Studies on starter metabolism. II. The influence of heating milk on the subsequent response of starter cultures. J. Dairy Sci. 40, 1053–1061.

    CAS  Google Scholar 

  • Greene, V. A. and Jezeski, J. J. 1957B. Studies on starter metabolism. III. Studies on cysteine-induced stimulation and inhibition of starter cultures in milk. J. Dairy Sci. 40, 1062–1070.

    CAS  Google Scholar 

  • Griffiths, M. W., Phillips, J. D. and Muir, D. D. 1981. Thermostability of proteases and lipases from a number of species of psychrotrophic bacteria of dairy origin. J. Appl. Bacteriol. 50, 289–303.

    CAS  Google Scholar 

  • Gripon, J. C. 1977A. Proteolytic system of P. roqueforti. IV. Properties of an acid carbox-ypeptidase. Ann. Biol Biochim. Biophys. 17, 283–298.

    CAS  Google Scholar 

  • Gripon, J. C. 1977B. The proteolytic system of Penicillium roqueforti. V. Purification and properties of an alkaline aminopeptidase. Biochemie 59, 679–686.

    CAS  Google Scholar 

  • Gripon, J. C. and Debest, B. 1976. Electrophoretic studies of the exocellular proteolytic system of Penicillium roqueforti.Lait56, 423–438. (French)

    CAS  Google Scholar 

  • Gripon, J. C., Desmazeaud, M. J., Le Bars, D. and Bergere, J. L. 1977. Role of proteolytic enzymes of Streptococcus lactis, Penicillium roqueforti, and Penicillium caseicolum during cheese ripening. J. Dairy Sci. 60, 1532–1538.

    CAS  Google Scholar 

  • Gripon, J. D. and Hermier, J. 1974. The proteolytic system of Penicillium roqueforti. III. Purification, properties and specificity of the protease inhibited by EDTA. Biochemie 56, 1323–1332.

    CAS  Google Scholar 

  • Grufferty, R. C. and Condon, S. 1983. Effect of fermentation sugar on hydrogen peroxide accumulation by Streptococcus lactis C10. J. Dairy Res. 50, 481–489.

    CAS  Google Scholar 

  • Gunsalus, I. C. and Niven, C. F., Jr. 1942. The effect of pH on lactic acid fermentation. J. Biol Chem. 145, 131–136.

    CAS  Google Scholar 

  • Hall, B. G. 1979. Lactose metabolism involving phospho-β-galactosidase in Klebsiella. J. Bacteriol. 138, 691–698.

    CAS  Google Scholar 

  • Hall, H. H., Benjamin, J. C., Wiesen, C. F. and Tsuchiya, H. M. 1951. Production of vitamin B12 by microorganisms, especially Streptomyces olivaceus (abstract). 119th Meeting Am Chem. Soc. p. 22A.

    Google Scholar 

  • Hall, H. H. and Tsuchiya, H. M. 1951. Method for producing vitamin B12. U.S. Patent 2,561,364.

    Google Scholar 

  • Hamann, W. T. and Marth, E. H. 1984. Survival of Streptococcus thermophilus and Lactobacillus bulgaricus in commercial and experimental yogurts. J. Food Prot. 47, 781–786.

    Google Scholar 

  • Hamilton, I. R. and Lebtag, H. 1979. Lactose metabolism by Streptococcus mutans: Evidence for induction of the tagatose 6-phosphate pathway. J. Bacteriol. 140, 1102–1104.

    CAS  Google Scholar 

  • Hamilton, I. R. and Lo, G. C. 1978. Co-induction of β-galactosidase and the lactose-phosphoenolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans. J. Bacteriol. 136, 900–908.

    CAS  Google Scholar 

  • Hamilton, J. S., Hill, R. D. and Van Leeuwen, H. 1974. A bitter peptide from Cheddar cheese. Agr. Biol Chem. 38, 375–379.

    CAS  Google Scholar 

  • Hammer, B. W. 1930. Observations on ropiness in butter cultures. J. Dairy Sci. 13, 69–77.

    Google Scholar 

  • Hammer, B. W. and Babel, F. J. 1957. Dairy Bacteriology. John Wiley and Sons, New York.

    Google Scholar 

  • Hammer, B. W. and Cordes, W. A. 1921. Burnt or caramel flavor of dairy products. Iowa Agr. Exp. Sta. Bull. 68, 146–156.

    Google Scholar 

  • Hammer, B. W. and Hussong, R. V. 1931. Observations on the heat resistance of some ropy milk organisms. J. Dairy Sci. 14, 27–39.

    Google Scholar 

  • Harding, H. A. and Prucha, M. J. 1920. An epidemic of ropy milk. Ill. Agr. Expt. Sta. Bull. 228.

    Google Scholar 

  • Hargrove, R. E. and Leviton, A. 1955. Process for the manufacture of vitamin B12. U.S. Patent 2,715,602.

    Google Scholar 

  • Hargrove, R. E., McDonough, F. E. and Mattingly, W. A. 1969. Factors affecting survival of Salmonella in Cheddar and Colby cheese. J. Milk Food Technol. 32, 480–484.

    CAS  Google Scholar 

  • Harper, W. J., Carmona de Catril, A. and Chen, J. L. 1980. Esterases of lactic streptococci and their stability in cheese slurry system. Milchwissenschaft 35, 129–132.

    CAS  Google Scholar 

  • Hartley, B. S. 1960. Proteolytic enzymes. Ann. Rev. Biochem. 29, 45–72.

    CAS  Google Scholar 

  • Hasan, N. and Durr, I. F. 1974. Induction of β-galactosidase in Lactobacillus plantarum. J. Bacteriol. 120, 66–73.

    CAS  Google Scholar 

  • Hawley, H. B. 1957A. Nisin in food technology—1. Food Manuf. 32, 370–376.

    CAS  Google Scholar 

  • Hawley, H. B. 1957B. Nisin in food technology—2. Food Manuf. 32, 430–434.

    CAS  Google Scholar 

  • Hawley, H. B. and Hall, R. H. 1960. Production of nisin. U.S. Patent 2,935,503.

    Google Scholar 

  • Heinemann, B., Stumbo, C. R. and Scurlock, A. 1964. Use of nisin in preparing beverage-quality sterile chocolate-flavored milk. J. Dairy Sci. 47, 8–12.

    CAS  Google Scholar 

  • Hemme, D., Nardi, M. and Jette, D. 1980A. β-Glactosidase and phospho-β-galactosidases of Streptococcus thermophilus. Lait 60, 595–618. (French).

    CAS  Google Scholar 

  • Hemme, D., Wahl, D. and Nardi, M. 1980B. Variations of enzyme systems by Streptococcus thermophilus. Lait 60, 111–129. (French)

    CAS  Google Scholar 

  • Hendlin, D. and Ruger, M. L. 1950. The effect of cobalt on the microbial systhesis of LLD-active substances. Science 111, 541–542.

    CAS  Google Scholar 

  • Hengstenberg, W., Egan, J. B. and Morse, M. L. 1967. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives and evidence for a new enzyme-splitting lactose phosphate. Proc. Natl. Acad. Sci. USA 58, 274–279.

    CAS  Google Scholar 

  • Hensel, R., Mayr, R., Stetter, K. O. and Kandier, O. 1977. Comparative studies of lactic acid dehydrogenase in lactic acid bacteria. I. Purification and kinetics of the allosteric L-lactic acid dehydrogenase from Lactobacillus casei spp. casei and Lactobacillus curvatus. Arch. Microbiol. 112, 81–93.

    CAS  Google Scholar 

  • Hettinga, D. H. and Reinbold, G. W. 1972A. The propionic-acid bacteria—A review. I. Growth. J. Milk Food Technol. 35, 295–301.

    Google Scholar 

  • Hettinga, D. H. and Reinbold, G. W. 1972B. The propionic-acid bacteria—A review. II. Metabolism. J. Milk Food Technol. 35, 358–372.

    CAS  Google Scholar 

  • Hickey, M. W., Hillier, A. J. and Jago, G. R. 1983. Enzymatic activities associated with lactobacilli in dairy products. Aust. J. Dairy Technol. 38, 154–158.

    CAS  Google Scholar 

  • Hidalgo, C., Reyes, J. and Goldschmidt, R. 1977. Induction and general properties of β-galatosidase and O-galactoside permease in Pseudomonas BAL-31. J. Bacteriol. 129, 821–829.

    CAS  Google Scholar 

  • Hirsch, A. 1950. The assay of the antibiotic nisin. J. Gen. Microbiol. 4, 70–83.

    CAS  Google Scholar 

  • Hirsch, A., Grinsted, E., Chapman, H. R. and Mattick, A. T. R. 1951. A note on the inhibition of an anaerobic sporeformer in Swiss-type cheese by a nisin-producing streptococcus. J. Dairy Res. 18, 205–206.

    Google Scholar 

  • Hirsch, A., McClintock, M. and Mocquot, G. 1952. Observations on the influence of inhibitory substances produced by the lactobacilli of Gruyere cheese on the development of anaerobic spore-formers. J. Dairy Res. 19, 179–186.

    CAS  Google Scholar 

  • Hirsch, A. and Grinsted, E. 1954. Methods for the growth and enumeration of anaerobic spore-formers from cheese, with observations on the effect of nisin. J. Dairy Res. 21, 101–110.

    Google Scholar 

  • Hiyama, T., Fukui, S. and Kitahara, K. 1968. Purification and properties of lactate racemase from Lactobacillus sake. J. Biochem. 64, 99–107.

    CAS  Google Scholar 

  • Hogarty, S. L. and Frank, J. F. 1982. Low temperature activity of lactic streptococci isolated from cultured buttermilk. J. Food Prot. 45, 1208–1211.

    Google Scholar 

  • Hogg, D. M. and Jago, G. R. 1970. The influence of aerobic conditions on some aspects of the growth and metabolism of Group N streptococci. Aust. J. Dairy Technol. 25, 17–18.

    CAS  Google Scholar 

  • Hoover, S. R., Jasewicz, L., Pepinsky, J. B. and Porges, N. 1952B. Activated sludge as a source of vitamin B12 for animal feed. Sewage Ind. Wastes 24, 38–44.

    CAS  Google Scholar 

  • Hoover, S. R., Jasewicz, L. and Porges, N. 1952A. Biochemical oxidation of dairy wastes. IV. Endogenous respiration and stability of aerated dairy waste sludge. Sewage Ind. Wastes 24, 1144–1149.

    CAS  Google Scholar 

  • Hoover, S. R. and Porges, N. 1952. Assimilation of dairy wastes by activated sludge. II. The equation of synthesis and rate of oxygen utilization. Sewage Ind. Wastes 24, 306–312.

    CAS  Google Scholar 

  • Hosono, A. and Elliott, J. A. 1974. Properties of crude ethylester-forming enzyme preparations from some lactic acid and psychrotrophic bacteria. J. Dairy Sci. 57, 1432–1437.

    CAS  Google Scholar 

  • Hosono, A., Elliott, J. A. and Morgan, W. A. 1974. Production of ethylesters by some lactic acid and psychrotrophic bacteria. J. Dairy Sci. 57, 535–539.

    CAS  Google Scholar 

  • Hoyle, M. and Nichols, A. A. 1948. Inhibitory strains of lactic streptococci and then-significance in the selection of cultures for starter. J. Dairy Res. 15, 398–408.

    CAS  Google Scholar 

  • Hurst, A. 1972. Interactions of food starter cultures and food-borne pathogens: The antagonism between Streptococcus lactis and spore-forming microbes. J. Milk Food Technol. 35, 418–423.

    Google Scholar 

  • Itoh, T., Ohashi, M., Toba, T. and Adachi, S. 1980. Purification and properties of β -galactosidase from Lactobacillus bulgaricus. Milchwissenschaft 35, 593–597.

    CAS  Google Scholar 

  • Jabrait, A. 1969. Influence of coagulation and freeze-drying on survival of lactic acid bacteria in bioghurt. Lait 49, 520–532. (French)

    Google Scholar 

  • Jagielski, V. 1871. Improvement in dietetic compounds from milk. U.S. Patent 117,889.

    Google Scholar 

  • Jasewicz, L. and Porges, N. 1958. Aeration of whey wastes. I. Nitrogen supplementation and sludge oxidation. Sewage Ind. Wastes 30, 555–561.

    CAS  Google Scholar 

  • Jezeski, J. J., Tatini, S. R., DeGarcia, P. C. and Olson, J. C., Jr. 1967. Influence of Streptococcus lactis on growth and enterotoxin A production by Staphylococcus aureus in milk (abstract). Bacteriol. Proc. 12, A66.

    Google Scholar 

  • Johnson, H. N. and DeBusk, A. G. 1970. The β-galactosidase system of Neurospora crassa. I. Purification and properties of the pH 4.2 enzyme. Arch. Biophys. 138, 408–411.

    CAS  Google Scholar 

  • Johnson, K. G. and McDonald, I. J. 1974. β-D-Phosphogalactosidase galactohydrolase from Streptococcus cremoris HP: Purification and properties. J. Bacteriol. 117, 667–674.

    CAS  Google Scholar 

  • Johnstone, D. B. and Pfeffer, M. 1959. Aerobic fermentation of whey by a nitrogen-fixing strain of Aerobacter aerogenes. Nature 183, 992–993.

    CAS  Google Scholar 

  • Jonas, H. A., Anders, R. F. and Jago, G. R. 1972. Factors affecting the activity of lactate dehydrogenase of Streptococcus cremoris. J. Bacteriol. 111, 397–403.

    CAS  Google Scholar 

  • Juan, S. M. and Cazzulo, J. J. 1976. The extracellular protease from Pseudomonas fluoresces. Experientia 32, 1120–1122.

    CAS  Google Scholar 

  • Kaminogawa, S., Ninomiya, T. and Yamauchi, K. 1984. Aminopeptidase profiles of lactic streptococci. J. Dairy Sci. 67, 2483–2492.

    CAS  Google Scholar 

  • Kapac-Parkaceva, N., Bauer, O. and Cizbanovski, T. 1975. Effects of different ratios of starter bacteria on amino acids spectrum in yoghurt made from cows milk. Mljekarstro 25, 33–42, cited in Dairy Sci. Abstr. 37, 722.

    CAS  Google Scholar 

  • Kastens, M. L. and Baldauski, F. A. 1952. Chemicals from milk. Ind. Eng. Chem. 44, 1257–1268.

    CAS  Google Scholar 

  • Keen, A. R. 1972. Growth studies on lactic streptococci. III. Observations on continuous rowth behaviour in reconstituted skim-milk. J. Dairy Res. 39, 151–159.

    CAS  Google Scholar 

  • Keenan, T. M. and Lindsay, R. C. 1968. Diacetyl production and utilization by actobacillus species. J. Dairy Sci. 51, 188–191.

    CAS  Google Scholar 

  • Kempler, G. M. and McKay, L. L. 1979. Characterization of plasmid deoxyribonucleic acid in Streptococcus lactis subsp. diacetylactis: Evidence for plamid-linked citrate utilization. Appl. Environ. Microbiol. 37, 316–323.

    CAS  Google Scholar 

  • Kempler, G. M. and McKay, L. L. 1981. Biochemistry and genetics of citrate utilization in Streptococcus lactis ssp. diacetylactis. J. Dairy Sci. 64, 1527–1539.

    CAS  Google Scholar 

  • Kennedy, E. P. and Scarborough, G. A. 1967. Mechanism of hydrolysis of O-nitrophenyl-β-galactoside in Staphylococcus aureus and its significance for theories of sugar transport. Proc. Natl. Acad. Sci. USA 58, 225–228.

    CAS  Google Scholar 

  • Keogh, B. P. 1970. Survival and activity of frozen starter cultures for cheese manufacture. Appl. Microbiol. 19, 928–931.

    CAS  Google Scholar 

  • Kinsella, J. E. and Hwang, D. 1976A. Biosynthesis of flavors by Penicillium roqueforti. Biotechnol. Bioeng. 18, 927–938.

    CAS  Google Scholar 

  • Kinsella, J. E. and Hwang, D. H. 1976B. Enzymes of Penicillium roqueforti involved in the biosynthesis of cheese flavor. Crit. Rev. Food Sci. Nutr. 8, 191–228.

    CAS  Google Scholar 

  • Kishonti, E. and Sjostrom, G. 1970. Influence of heat resistant lipases and proteases in psychrotrophic bacteria on product quality. 18th Int. Dairy Congr. 1E, 501.

    Google Scholar 

  • Kooy, J. S. 1952. Strains of Lactobacillus plantarum which will inhibit the activity of the antibiotics produced by Streptococcus lactis. Ned. Melk. Zuiveltijdschr. 6, 323–330. (Dutch)

    Google Scholar 

  • Korkeala, H., Soback, S. and Hirn, J. 1984. Effect of cadmium on the growth of Lactobacillus lactis, L. helviticus and Streptococcus thermophilus in milk. J. Dairy Res. 51, 591–596.

    CAS  Google Scholar 

  • Kornacki, J. L. and Marth, E. H. 1982A. Fate of nonpathogenic and enteropathogenic Escherichia coli during the manufacture of Colby-like cheese. J. Food Prot. 45, 310–316.

    Google Scholar 

  • Kornacki, J. L. and Marth, E. H. 1982B. Foodborne illness caused by Escherichia coli: A review. J. Food Prot. 45, 1051–1067.

    Google Scholar 

  • Kosikowski, F. 1977. Cheese and Fermented Milk Foods. F. V. Kosikowski and Associates, Brookton, NY.

    Google Scholar 

  • Kundig, W. 1976. The bacterial phosphoenolpyruvate phosphotransferase system. In: The Enzymes of Microbiological Membranes. A. Martonasi (Editor). Plenum Press, New York, pp. 31–53.

    Google Scholar 

  • Kundig, W., Ghosh, S. and Roseman, S. 1964. Phosphate bound to histidine in protein as an intermediate in a novel phosphotransferase system. Proc. Natl. Acad. Sci. USA 52, 1067–1074.

    CAS  Google Scholar 

  • Lamberet, G. and Menassa, A. 1983. Purification and properties of an acid lipase from Penicillin roqueforti. J. Dairy Res. 50, 459–468.

    CAS  Google Scholar 

  • Lamprech, E. D. and Foster, E. M. 1963. The survival of starter organisms in concentrated suspensions. J. Appl. Bacteriol. 26, 359–369.

    Google Scholar 

  • Langhus, W. L., Price, W. V., Sommer, H. H. and Frazier, W. C. 1945. The smear; of brick cheese and its relation to flavor development. J. Dairy Sci. 28, 827–838.

    CAS  Google Scholar 

  • Langsrud, T. and Reinbold, G. W. 1973. Flavor development and microbiology of Swiss cheese—A review. III. Ripening and flavor production. J. Milk Food Technol. 36, 593–609.

    Google Scholar 

  • Larsen, L. D. and McKay, L. L. 1978. Isolation and characterization of plasmid DNA in Streptococcus cremoris. Appl. Environ. Microbiol. 36, 944–952.

    CAS  Google Scholar 

  • Law, B. A. 1979A. Enzymes of psychrotrophic bacteria and their effects on milk and milk products. J. Dairy Res. 46, 573–588.

    CAS  Google Scholar 

  • Law, B. A. 1979B. Extracellular peptidases in Group N streptococci used as cheese starters. J. Appl. Bacteriol. 46, 455–463.

    CAS  Google Scholar 

  • Law, B. A. 1980. Transport and utilization of proteins by bacteria. In: Micro-organisms and Nitrogen Sources. J. W. Payne (Editor). John Wiley and Sons, New York, pp. 381–409.

    Google Scholar 

  • Law, B. A., Castanon, M. J. and Sharpe, M. E. 1976A. The contribution of starter streptococci to flavour development in Cheddar cheese. J. Dairy Res. 43, 301–311.

    CAS  Google Scholar 

  • Law, B. A., Sezgin, E. and Sharpe, M. E. 1976B. Amino acid nutrition of some commercial cheese starters in relation to their growth in peptone supplemented whey media. J. Dairy Res. 43, 291–300.

    CAS  Google Scholar 

  • Law, B. A., and Sharpe, M. E. 1978. Streptococci in the dairy industry. In: Streptococci. F. A. Skinner and L. B. Quesnal (Editors). Academic Press, New York, pp. 263–278.

    Google Scholar 

  • Law, B. A., Sharpe, M. E. and Chapman, H. R. 1976C. The effect of lipolytic gramnegative psychrotrophs in stored milk on the development of rancidity in Cheddar cheese. J. Dairy Res. 43, 459–468.

    CAS  Google Scholar 

  • Law, B. A., Sharpe, M. E. and Reiter, B. 1974. The release of intracellular dipeptidase from starter streptococci during Cheddar cheese ripening. J. Dairy Res. 41, 137–146.

    CAS  Google Scholar 

  • Lawrence, R. C., Thomas, T. D. and Terzaghi, B. E. 1976. Reviews of the progress of dairy science: Cheese starters. J. Dairy Res. 43, 141–143.

    CAS  Google Scholar 

  • Le Bars, D. and Gripon, J. E. 1981. Role of Penicillium roqueforti proteinases during blue cheese ripening. J. Dairy Res. 48, 479–487.

    Google Scholar 

  • Lederberg, J. 1950. The β-D-galactosidase of Escherichia coli strain K-12. J. Bacteriol. 60, 381–392.

    CAS  Google Scholar 

  • Lenoir, J. 1963. The development of microflora during the ripening of Camembert cheese. Lait 43, 262–270. (French)

    Google Scholar 

  • Leviton, A. 1946. The microbiological synthesis of riboflavin—A theory concerning its inhibition. J. Am. Chem. Soc. 68, 835–840.

    CAS  Google Scholar 

  • Leviton, A. 1949. Microbiological production of riboflavin. U.S. Patent 2,477,812.

    Google Scholar 

  • Leviton, A. 1956A. Process for the microbiological synthesis of vitamin B12 active substances. U.S. Patent 2,753,289.

    Google Scholar 

  • Leviton, A. 1956B. Process for the preparation and concentration of vitamin B12 active substances. U.S. Patent 2,764,521.

    Google Scholar 

  • Leviton, A. and Hargrove, R. E. 1952. Microbiological synthesis of vitamin B12 by propionic acid bacteria. Ind. Eng. Chem. 44, 2651–2655.

    CAS  Google Scholar 

  • Lockwood, L. B. and Stodola, F. H. 1950. Process of culturing bacteria. U.S. Patent 2,496,297.

    Google Scholar 

  • Lundstedt, E. and Fogg, W. B. 1962. Citrated whey starters. II. Gradual formation of flavor and aroma in creamed cottage cheese after the addition of small quantities of citrated cottage cheese whey cultures of Streptococcus diacetilactis. J. Dairy Sci. 45, 1327–1331.

    CAS  Google Scholar 

  • Macquot, G. and Lefebvre, E. 1959. A simple procedure to detect nisin in cheese. J. Appl. Bacteriol. 19, 322–323.

    Google Scholar 

  • Macura, D. and Townsley, P. M. 1984. Scandinavian ropy milk—Identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J. Dairy Sci. 67, 735–744.

    CAS  Google Scholar 

  • Marin, A., Mawhinney, T. P. and Marshall, R. T. 1984. Glycosidic activities of Pseudomonas fluorescens on fat extracted skim milk, buttermilk, and milk fat globule membranes. J. Dairy Sci. 67. 52–59.

    CAS  Google Scholar 

  • Marshall, V. M. and Cole, W. M. 1983. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented foods. J. Dairy Res. 50, 375–379.

    CAS  Google Scholar 

  • Marth, E. H. 1963. Microbiological and chemical aspects of Cheddar cheese ripening. J. Dairy Sci. 46, 869–890.

    CAS  Google Scholar 

  • Marth, E. H. 1966. Antibiotics in foods—naturally occurring, developed, and added. In: Residue Reviews, Vol. 12. F. A. Gunther (Editor). Springer-Verlag, New York, pp. 65–161.

    Google Scholar 

  • Marth, E. H. 1969. Salmonella and salmonellosis associated with milk and milk products. A review. J. Dairy Sci. 52, 283–315.

    CAS  Google Scholar 

  • Marth, E. H. 1970. Fermentation products from whey. In: Byproducts from Milk. B. H. Webb and E. O. Whittier (Editors). AVI Publishing Co., Westport, Conn., pp. 43–74.

    Google Scholar 

  • Marth, E. H. 1974. Fermentations. In: Fundamentals of Dairy Chemistry, 2nd ed. B. W. Webb, A. H. Johnson and J. A. Alford (Editors). AVI Publishing Co., Westport, Conn., pp. 772–858.

    Google Scholar 

  • Marth, E. H. 1981. Foodborne hazards of microbial origin. In: Food Safety. H. R. Roberts (Editor). John Wiley and Sons, New York, pp. 15–65.

    Google Scholar 

  • Marth, E. H. 1985. Pathogens in milk and milk products. In: Standard Methods for the Examination of Dairy Products, 15th ed. G. H. Richardson (Editor). American Public Health Association, Washington, D.C., pp. 43–87.

    Google Scholar 

  • Marth, E. H. and Hussong, R. V. 1962. Effect of skim milks cultured with different strains of Leuconostoc citrovorum on growth of some microorganisms associated with cottage cheese spoilage (abstract). J. Dairy Sci. 45, 652–653.

    Google Scholar 

  • Marth, E. H. and Hussong, R. V. 1963. Effect of skim milks cultured with different strains of Leuconostoc citrovorum on growth of some bacteria and yeasts. J. Dairy Sci. 46, 1033–1037.

    Google Scholar 

  • Marth, E. H., Ingold, D. L. and Hussong, R. V. 1964. Ropiness in milk caused by a strain of Escherichia intermedia. J. Dairy Sci. 47, 1265–1266.

    Google Scholar 

  • Martin, J. H. and Cardwell, J. T. 1960. Use of frozen ripened lactic cultures in the manufacture of cottage cheese. J. Dairy Sci. 43, 438–439.

    Google Scholar 

  • Masson, P. L. and Heremans, J. R. 1971. Lactoferrin in milk from different species. Comp. Biochem. Physiol 39B, 119–129.

    Google Scholar 

  • Mather, D. W. and Babel, F. J. 1959. Inhibition of certain types of bacterial spoilage in creamed cottage cheese by the use of a creaming mixture prepared with Streptococcus citrovorus. J. Dairy Sci. 42, 1917–1926.

    Google Scholar 

  • Mattick, A. T. R. and Hirsch, A. 1944. A powerful inhibitory substance produced by group N streptococci. Nature 154, 551.

    CAS  Google Scholar 

  • Mattick, A. T. R. and Hirsch, A. 1947. Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 253, 5–7.

    Google Scholar 

  • Maurer, L., Reinbold, G. W. and Hammond, E. G. 1975. Effect of copper on microorganisms in the manufacture of Swiss cheese. J. Dairy Sci. 58, 1630–1635.

    CAS  Google Scholar 

  • Maxwell, E. S., Kurahashi, K. and Kalckar, H. M. 1962. Enzymes of the Leloir pathway. Meth. Enzymol 5, 174–189.

    CAS  Google Scholar 

  • McFeters, G. A., Sandine, W. E. and Elliker, P. R. 1967. Purification and properties of Streptococcus lactis β-galactosidase. J. Bacteriol. 93, 914–919.

    CAS  Google Scholar 

  • McKay, L. L. 1982. Regulation of lactose metabolism. In: Developments in Food Microbiology, Vol. 1. R. Davies (Editor). Applied Science Publisher, Essex, England, pp. 153–182.

    Google Scholar 

  • McKay, L. L. 1983. Functional properties of plasmids in lactic streptococci. Antonie van Leuwenhoek 49, 259–274.

    CAS  Google Scholar 

  • McKay, L. L. and Baldwin, K. A. 1974. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactic dehydrogenase. J. Dairy Sci. 57, 181–185.

    CAS  Google Scholar 

  • McKay, L. L. and Baldwin, K. A. 1975. Plasmid distribution and evidence for a proteinase plasmid in Streptococcus lactis C2. Appl. Microbiol. 29, 546–548.

    CAS  Google Scholar 

  • McKay, L. L. and Baldwin, K. A. 1978. Stabilization of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 36, 360–367.

    CAS  Google Scholar 

  • McKay, L. L., Baldwin, K. A. and Efstathiou, J. D. 1976. Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32, 45–52.

    CAS  Google Scholar 

  • McKay, L. L., Miller, A., Sandine, W. E. and Elliker, P. R. 1970. Mechanism of lactose utilization by lactic acid streptococci: Enzymatic and genetic analyses. J. Bacteriol. 120, 804–809.

    Google Scholar 

  • Meade, R. E., Pollard, H. L. and Rodgers, N. E. 1945. Process for manufacturing a vitamin concentrate. U.S. Patent 2,369,680.

    Google Scholar 

  • Meewes, K. H. and Milosevic, S. 1962. On the effect of a culture filtrate of Lactobacillus helveticus on the ability of Escherichia coli to produce gas. Milchwissenschaft 17, 678–679. (German)

    Google Scholar 

  • Mehala, M. A., Cheryan, M. and Argondelis, A. 1985. Conversion of whey permeate to ethanol. Improvement of fermentor productivity using membrane reactors. Cult. Dairy Prod. J. 20, 9–12.

    Google Scholar 

  • Meilerick, D. and Cogan, T. M. 1981. Induction of some enzymes of citrate metabolism in Leuconostoc lactis and other heterofermentative lactic acid bacteria. J. Dairy Res. 48, 497–502.

    Google Scholar 

  • Mencher, J. R. and Alford, J. A. 1967. Purification and characterization of the lipase of Pseudomonas fragi. J. Gen. Microbiol. 48, 317–328.

    CAS  Google Scholar 

  • Michaelian, M. B., Hoecker, W. H. and Hammer, B. W. 1938. Effect of pH on the production of acetylmethylcarbinol plus diacetyl in milk by the citric acid fermenting streptococci. J. Dairy Sci. 21, 213–218.

    CAS  Google Scholar 

  • Miller, A., III, Morgan, M. E. and Libbey, L. M. 1974. Lactobacillus maltaromicus, a new species producing a malty arome. Int. J. Systematic Bacteriol. 24, 346–354.

    CAS  Google Scholar 

  • Miller, I. and Kandier, O. 1967. Proteolysis and liberation of free amino acids by lactic acid bacteria in milk. I. Changes of the N fractions. Milchwissenschaft. 22, 150–159.

    CAS  Google Scholar 

  • Mills, O. E. and Thomas, T. D. 1980. Bitterness development in Cheddar cheese: Effect of the level of starter proteinase. N.Z. J. Dairy Sci. Technol. 15, 131–141.

    CAS  Google Scholar 

  • Minamiura, N., Matsumera, Y., Fukumoro, J. and Yamamoto, T. 1972. Bitter peptides in cow milk casein digests with amino acid sequence of a bitter peptide. Agr. Biol. Chem. 36, 588–595.

    CAS  Google Scholar 

  • Miner, C. S., Jr. and Wolnak, B. 1953. Process of preparing vitamin B12-active product from sewage sludge. U.S. Patent 2,646,386.

    Google Scholar 

  • Minor, T. E. and Marth, E. H. 1972. Fate of Staphyloccus aureus in cultured butter-milk, sour cream, and yogurt during storage. J. Milk food Technol. 35, 302–306.

    Google Scholar 

  • Minor, T. E. and Marth, E. H. 1976. Staphylococci and Their Significance in Foods. Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

  • Mitchell, G. E. 1979. Seasonal variation in citrate content of milk. Aust. J. Dairy Technol. 34, 158–160.

    CAS  Google Scholar 

  • Mitscherlich, E. and Marth, E. H. 1984. Microbial Survival in the Environment: Bacteria and Rickettsiae Important in Human and Animal Health. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Modler, H., Brunner, J. R. and Stine, C. M. 1974. Extracellular protease of Pencillium roqueforti. II. Characterization of a purified enzyme preparation. J. Dairy Sci. 57, 528–534.

    CAS  Google Scholar 

  • Molskness, T. A., Lee, D. R., Sandine, W. E. and Elliker, P. R. 1973. β-D-Phosphogalactoside galactohydrolase of lactic stretococci. Appl. Microbiol. 25, 373–380.

    CAS  Google Scholar 

  • Moon, N. J. and Reinbold, G. W. 1976. Commensalism and competition in mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. J. Milk Food Technol. 39, 337–341.

    Google Scholar 

  • Moreno, V. and Kosikowski, F. V. 1973. Peptides, amino acids and amines liberated from β-casein by micrococcal cell-free preparations. J. Dairy Sci. 56, 39–44.

    CAS  Google Scholar 

  • Morgan, M. E. 1976. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol Bioeng. 18, 953–965.

    CAS  Google Scholar 

  • Morgan, M. E., Lindsay, R. C., Libbey, L. M. and Pereira, R. L. 1966. Identity of additional aroma constituents in milk cultures of Streptococcus lactis var. maltigenes. J. Dairy Sci. 49, 15–18.

    CAS  Google Scholar 

  • Morihara, K. 1974. Comparative specificity of microbial proteinases. Adv. Enzymol. 41, 179–244.

    CAS  Google Scholar 

  • Mou, L., Sullivan, J. J. and Jago, G. R. 1975. Peptidase activities in Group N streptococci. J. Dairy Res. 42, 147–155.

    CAS  Google Scholar 

  • Murgier, M., Pelissier, C. and Lazdunski, A. 1976. Existence, localization, and regulation of the biosynthesis of aminoendopeptidase in gram-negative bacteria. Eur. J. Biochem. 65, 517–520.

    CAS  Google Scholar 

  • Murray, K. E. and Whitfield, F. B. 1975. The occurrence of 3-alky-2-methoxy-pyrazines in raw vegetables. J. Sci. Food Agr. 26, 973–986.

    CAS  Google Scholar 

  • Myers, R. P. and Stimpson, E. G. 1956. Production of lactase. U.S. Patent 2,762,749.

    Google Scholar 

  • Nashif, S. A. and Nelson, F. E. 1953A. The lipase of Pseudomonas fragi. I. Characterization of the enzyme. J. Dairy Sci. 39, 459–470.

    Google Scholar 

  • Nashif, S. A. and Nelson, F. E. 1953B. The lipase of Pseudomonas fragi. II. Factors affecting lipase production. J. Dairy Sci. 36, 471–480.

    CAS  Google Scholar 

  • Nashif, S. A. and Nelson, F. E. 1953C. The lipase of Pseudomonas fragi. III. Enzyme action in cream and butter. J. Dairy Sci. 36, 481–488.

    CAS  Google Scholar 

  • Newton, G. G. F., Abraham, E. P. and Berridge, N. J. 1953. Sulfur-containing aminoacids of nisin. Nature 171, 606.

    CAS  Google Scholar 

  • Noreau, J. and Drapeau, G. R. 1979. Isolation and properties of the protease from the wild-type and mutant strains of Pseudomonas fragi. J. Bacteriol. 140, 911–916.

    CAS  Google Scholar 

  • Okamoto, T. and Morichi, T. 1979. Distribution of β-galactosidase and β-phosphogalactosidase activity among lactic streptococci. Agr. Biol Chem. 43, 2389–2390.

    CAS  Google Scholar 

  • O’Leary, V. S. and Woychik, J. H. 1976. Utilization of lactose, glucose, and galactose by a mixed culture of Streptococcus thermophilus and Lactobacillus bulgaricus in milk treated with lactase enzyme. Appl. Environ. Microbiol. 32, 89–94.

    Google Scholar 

  • Olive, T. R. 1936. Waste lactose is raw material for a new lactic acid process. Chem. Met. Eng. 43, 481–483.

    Google Scholar 

  • Olson, H. C. and Qutub, A. H. 1970. Influence of trace minerals on the acid production by lactic cultures. Cult. Dairy Prod J. 5, 12–17.

    Google Scholar 

  • Orla-Jensen, S., Orla-Jensen, A. D. and Spur, B. 1926. The butter aroma bacteria. J. Bacteriol. 12, 333–342.

    CAS  Google Scholar 

  • Otto, R., Devos, W. M. and Gavrieli, J. 1981. Plasmid DNA in Streptococcus cremoris Wg2: Influence of pH on selection in chemostats of a variant lacking a protease plasmid. Appl. Environ. Microbiol. 43, 1272–1277.

    Google Scholar 

  • Overcast, W. W. and Atmaran, K. 1974. The role of Bacillus cereus in sweet curdling of fluid milk. J. Milk Food Technol. 37, 233–236.

    Google Scholar 

  • Pack, M. Y., Vedamuthu, E. R., Sandine, W. E. and Elliker, P. R. 1968. Hydrogen peroxide-catalase milk treatment for enhancement and stabilization of diacetyl in lactic starter cultures. J. Dairy Sci. 51, 511–516.

    CAS  Google Scholar 

  • Pacquet, J. and Gripon, J. C. 1980. Intracellular peptide hydrolases of Penicillium roqueforti. Milchwissenschaft 35, 72–74.

    Google Scholar 

  • Park, H. S. and Marth, E. H. 1972A. Behavior of Salmonella typhimurium in skimmilk during fermentation by lactic acid bacteria. J. Milk Food Technol. 35, 482–488.

    Google Scholar 

  • Park, H. S. and Marth, E. H. 1972B. Survival of Salmonella typhimurium in refrigerated cultured milk. J. Milk Food Technol. 35, 489–495.

    Google Scholar 

  • Park, H. S., Marth, E. H., Goepfert, J. M. and Olson, N. F. 1970. The fate of Salmonella typhimurium in the manufacture and ripening of low-acid Cheddar cheese. J. Milk Food Technol. 33, 280–284.

    Google Scholar 

  • Park, H. S., Marth, E. H. and Olson, N. F. 1973. Fate of enteropathogenic strains of Escherichia coli during the manufacture and ripening of Camembert cheese. J. Milk Food Technol. 36, 532–546.

    Google Scholar 

  • Park, Y. H. and McKay, L. L. 1982. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. J. Bacteriol. 149, 420–425.

    CAS  Google Scholar 

  • Park, Y K., Desanti, M. S. S. and Pastore, G. M. 1979. Production and characterization of β-galactosidase from Aspergillus oryzae. J. Food Sci. 4, 100–103.

    CAS  Google Scholar 

  • Pastore, G. M. and Park, Y K. 1979. Screening of high β-galactosidase producing fungi and characterizing the hydrolysis properties of a selected strain. J. Food Sci. 44, 1577–1579.

    CAS  Google Scholar 

  • Patel, G. B. and Blankenagel, G. 1972. Bacterial counts of raw milk and flavor of the milk after pasteurization and storage. J. Milk Food Technol. 35, 203–206.

    Google Scholar 

  • Pearce, L. E., Skipper, N. A. and Jarvis, B. D. W. 1974. Proteinase activity in slow lactic acid producing variants of Streptococcus lactis. Appl. Microbiol. 27, 933–937.

    CAS  Google Scholar 

  • Peebles, M. M., Gilliland, S. E. and Speck, M. L. 1969. Preparation of concentrated lactic streptococcus starters. Appl. Microbiol. 17, 805–810.

    CAS  Google Scholar 

  • Peterson, A. C. and Gunderson, M. F. 1960. Some characteristics of proteolytic enzymes from Pseudomonas fluorescens. Appl. Microbiol. 8, 98–103.

    CAS  Google Scholar 

  • Platt, T. B., and Foster, E. M. 1958. Products of glucose metabolism by homo-fermentative streptococci under anaerobic conditions. J. Bacteriol. 75, 453–459.

    CAS  Google Scholar 

  • Pomeranz, Y 1964. Lactase (beta-D-galactosidase). I. Occurrence and properties. Food Technol. 18, 682–687.

    Google Scholar 

  • Porges, N. 1956. Waste treatment by optimal aeration—Theory and practice in dairy waste disposal. J. Milk Food Technol. 19, 34–38.

    CAS  Google Scholar 

  • Porges, N. 1958. Practical application of laboratory data to dairy waste treatment. Food Technol. 12, 78–80.

    CAS  Google Scholar 

  • Porges, N., Michener, T. S., Jr., Jasewicz, J. and Hoover, S. R. 1960. Dairy waste treatment by aeration. Agriculture Handbook. Agriculture Research Service, Washington, D.C.

    Google Scholar 

  • Porges, N., Pepinsky, J. B., Hendler, N. C. and Hoover, S. R. 1950. Biochemical oxidation of dairy wastes. I. Methods of study. Sewage Ind. Wastes 22, 318–325.

    CAS  Google Scholar 

  • Porzio, M. A. and Pearson, A. M. 1975. Isolation of an extracellular neutral proteinase from Pseudomonas fragi. Biochim. Biophys. Acta 384, 235–241.

    CAS  Google Scholar 

  • Postma, P. W. and Roseman, S. 1976. The bacterial phosphoenolpyruvate: Sugar phosphotransferase system. Biochim. Biophys. Acta 457, 213–257.

    CAS  Google Scholar 

  • Premi, L., Sandine, W. E. and Elliker, P. R. 1972. Lactose-hydrolyzing enzymes of Lactobacillus species. Appl. Microbiol. 24, 51–57.

    CAS  Google Scholar 

  • Prescott, S. C. and Dunn, C. G. 1957. Industrial Microbiology. McGraw-Hill, New York.

    Google Scholar 

  • Ramseier, H. R. 1960. The action of nisin on Clostridium butyricum Prazm. Arch. Mikrobiol 37, 57–94. (German)

    CAS  Google Scholar 

  • Rao, D. R., Reddy, A. V., Pulusani, S. R. and Cornwell, P. E. 1984. Biosynthesis and utilization of folic acid and vitamin B12 by lactic culture in skim milk. J. Dairy Sci. 67, 1169–1174.

    CAS  Google Scholar 

  • Rash, K. E. and Kosikowski, F. V. 1982. Influence of lactic acid starter bacteria on enteropathogenic Escherichia coli in ultrafiltration prepared Camembert cheese. J. Dairy Sci. 65, 537–543.

    Google Scholar 

  • Rasic, J. and Kurman, J. A. 1978. Yoghurt—Scientific Grounds, Technology, Manufacture and Preparation, Vol. 1. Technical Dairy Publishing House, Copenhagen.

    Google Scholar 

  • Reddy, K. P., Shahani, K. M. and Kulkarni, S. M. 1976. B-complex vitamins in cultured and acidified yogurt. J. Dairy Sci. 59, 191–195.

    CAS  Google Scholar 

  • Reiter, B. 1978. Review of the progress of dairy science: Antimicrobial systems in milk. J. Dairy Res. 45, 131–147.

    CAS  Google Scholar 

  • Reiter, B., Fewins, B. G., Fryer, T. F. and Sharpe, M. E. 1964. Factors affecting the multiplication and survival of coagulase positive staphylococci in Cheddar cheese. J. Dairy Res. 31, 261–272.

    Google Scholar 

  • Reiter, B. and Oram, J. D. 1962. Nutritional studies on cheese starters. I. Vitamins and amino acid requirements of single strain starters. J. Dairy Res. 29, 63–77.

    CAS  Google Scholar 

  • Reiter, B. and Sharpe, M. E. 1971. Relationship of the microflora to the flavour of Cheddar cheese. J. Appl. Bacteriol. 34, 63–80.

    CAS  Google Scholar 

  • Reiter, B., Fryer, T. F., Pickering, A., Chapman, H. R., Lawrence, R. C. and Sharpe, M. E. 1967. The effect of the microbiol flora on the flavour and free fatty acid composition of Cheddar cheese. J. Dairy Res. 34, 257–272.

    CAS  Google Scholar 

  • Rhee, S. K. and Pack, M. Y. 1980. Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. J. Bacteriol. 144, 217–221.

    CAS  Google Scholar 

  • Richardson, B. C. 1981. The purification and characterization of a heat-stable protease from Pseudomonas fluorescens B52. N.Z. J. Dairy Sci. Technol. 16, 195–207.

    CAS  Google Scholar 

  • Richardson, B. C. and Te Whaiti, I. E. 1978. Partial Characterization of heat-stable extracellular proteases of some psychrotrophic bacteria from raw milk. N.Z. J. Dairy Sci. Technol. 13, 172–176.

    CAS  Google Scholar 

  • Richardson, G. H. and Calbert, H. E. 1959. A storage study of a lyophilized and a frozen lactic culture (abstract). J. Dairy Sci. 42, 907.

    Google Scholar 

  • Richardson, G. H., Cheng, C. T. and Young, R. 1977. Lactic bulk culture system using whey-based bacteriophage-inhibitory medium and pH control. I. Applicability to American style cheese. J. Dairy Sci. 60, 378–386.

    CAS  Google Scholar 

  • Richter, R. L., Brank, W. S., Dill, C. W. and Watts, C. A. 1979. Ascorbic acid stimulation of diacetyl production in mixed-strain lactic acid cultures. J. Food Prot. 42, 294–296.

    CAS  Google Scholar 

  • Roberts, H. R. and Pettinati, J. D. 1957. Concentration effects in the enzymatic conversion of lactose to oligosaccharides. J. Agr. Food Chem. 5, 130–134.

    CAS  Google Scholar 

  • Rodopulo, A. K., Kavadze, A. V. and Pisarnitskii, A. F. 1976. Biosynthesis and metabolism of acetoin and diacetyl. Appl. Biochem. Microbiol. 12, 249–255.

    Google Scholar 

  • Rogers, L. A. 1928. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol. 16, 321–325.

    CAS  Google Scholar 

  • Rogosa, M., Browne, H. H. and Whittier, E. O. 1947. Ethyl alcohol from whey. J. Dairy Sci. 30, 263–270.

    Google Scholar 

  • Rohlfing, S. R. and Crawford, I. P. 1966. Purification and characterization of the β-galactosidase of Aeromonas formicans. J. Bacteriol. 91, 1085–1097.

    CAS  Google Scholar 

  • Romano, A. H., Eberhand, S. J., Dingle, S. L. and McDowell, T. D. 1970. Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in bacteria. J. Bacteriol. 104, 808–813.

    CAS  Google Scholar 

  • Romano, A. H., Trifone, J. D. and Brustolon, M. 1979. Distribution of the phosphoenolp-yruvaterglucose phosphotransferase system in fermentative bacteria. J. Bacteriol. 139, 93–97.

    CAS  Google Scholar 

  • Roseman, S. 1969. The transport of carbohydrates by a bacterial phosphotransferase system. J. Gen. Physiol 54, 138s–179s.

    CAS  Google Scholar 

  • Roseman, S. 1972. A bacterial phosphotransferase system and its role in sugar transport. In: The Molecular Basis of Biological Transport. J. F. Woissner Jr. and J. Huijing (Editors). Academic Press, New York, pp. 181–218.

    Google Scholar 

  • Roseman, S. 1975. The bacterial phosphoenolpyruvate:sugar phosphotransferase system. In: Energy Transformation in Biological Systems. CIBA Foundation Symposium 31. Associated Scientific Publishers, New York, pp. 225–241.

    Google Scholar 

  • Ruban, E. L., Lobyreva, L. B., Sviridenko, Y. Y, Marchenkova, A. I. and Umanskii, M. S. 1978. Lipolytic activity of microorganisms isolated from different sources. Appl. Biochem. Microbiol. 14, 393–396.

    Google Scholar 

  • Rykshina, Z. P. 1961. Biological means to enrich fermented milk products with vitamin B12 (abstract). Milchwissenschaft 16, 434. (German)

    Google Scholar 

  • Ryser, E. T., Marth, E. H. and Doyle, M. P. 1985. Survival of Listeria monocytogenes during manufacture and storage of cottage cheese. J. Food Prot. 48, 746–750.

    Google Scholar 

  • Sadovski, A. Y., Gordin, S. and Foreman, I. 1980. Psychrotrophic growth of microorganisms in a cultured milk product. J. Food Prot. 43, 765–768.

    Google Scholar 

  • Sandine, W. E., Daly, C., Elliker, P. R. and Vedamuthu, E. R. 1972. Causes and control of culture-related flavor defects in cultured dairy products. J. Dairy Sci. 55, 1031–1039.

    CAS  Google Scholar 

  • Sarles, W. B. and Hammer, B. W. 1933. Species of Escherichia-Aerobacter organisms responsible for some defects in dairy products. J. Bacteriol. 25, 461–467.

    CAS  Google Scholar 

  • Saunders, A. P., Otto, R. H. and Sylvester, J. C. 1951. The production of B12 by various strains of actinomycetes (abstract). 119th Meeting Am. Chem. Soc. p. 21 A.

    Google Scholar 

  • Schmidt, R. H., Morris, H. A., Castberg, H. B. and McKay, L. L. 1976. Hydrolysis of milk proteins by bacteria used in cheesemaking. J. Agr. Food Chem. 24, 1106–1113.

    CAS  Google Scholar 

  • Schulz, M. E. and Hingst, G. 1954. Contributions to the chemistry of yogurt. Part I. Acetaldehyde—color reactions in the examination of yogurt. Milchwissenschaft 9, 330–336. (German)

    CAS  Google Scholar 

  • Schulz, M. E., Vosz, E. and Kley, W. 1954. Contributions to the chemistry of yogurt. Part II. Studies on the application of the acetaldehyde—color reactions to evaluate yogurt. Milchwissenschaft 9, 361–365.

    CAS  Google Scholar 

  • Scitz, E. W., Sandine, W. E., Elliker, P. R. and Day, E. A. 1963. Distribution of diacetyl reductase among bacteria. J. Dairy Sci. 43, 346–350.

    Google Scholar 

  • Selby Smith, J., Hillier, A. J., Lees, G. J. and Jago, G. R. 1975. The nature of the stimulation of the growth of Streptococcus lactis by yeast extract. J. Dairy Res. 42, 123–138.

    Google Scholar 

  • Severina, L. O. and Bashkatova, N. A. 1981. Lipases of gram-negative bacteria (review). Appl. Biochem. Microbiol. 17, 131–143.

    Google Scholar 

  • Sheldon, R. M., Lindsay, R. C., Libbey, L. M. and Morgan, M. E. 1971. Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes. Appl. Microbiol. 22, 263–266.

    CAS  Google Scholar 

  • Simmons, J. C. and Graham, D. M. 1959. Maintenance of active lactic cultures by freezing as an alternative to daily transfer. J. Dairy Sci. 42, 363–364.

    Google Scholar 

  • Smith, E. E. 1970. Biosynthetic relation between the soluble and insoluble dextrans produced by Leuconostoc mesenteroides NRRL B-1229. FEBS Lett. 12, 33–37.

    CAS  Google Scholar 

  • Somkuti, G. A. and Steinberg, D. H. 1979A. Adaptability of Streptococcus thermophilus to lactose, glucose, and galactose. J. Food Prot. 42, 885–887.

    CAS  Google Scholar 

  • Somkuti, G. A. and Steinberg, D. H. 1979B. β-D-Galactoside galactohydrolase of Streptococcus thermophilus: Induction, purification, and properties. J. Appl. Biochem. 1, 357–368.

    CAS  Google Scholar 

  • Speck, M. L. 1962. Symposium on lactic starter cultures. IV. Starter culture growth and action in milk. J. Dairy Sci. 54, 1253–1258.

    Google Scholar 

  • Speck, M. L. 1972. Control of food-borne pathogens by starter cultures. J. Dairy Sci. 55, 1019–1022.

    Google Scholar 

  • Springer, R. 1950. The components of whey-yeast and their importance in pharmacy. Pharmazie 5, 113–115. (German)

    CAS  Google Scholar 

  • Stadhouders, J. and Veringa, H. A. 1973. Fat hydrolysis by lactic acid bacteria in cheese. Neth. Milk Dairy J. 27, 77–91.

    Google Scholar 

  • Stamer, J. R. 1979. The lactic acid bacteria: Microbes of diversity. Food Technol. 33, 60–65.

    CAS  Google Scholar 

  • Stanier, R. Y., Doudoroff, M. and Adelberg, E. A. 1970. The Microbial World, 3rd ed. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Stepaniak, L. and Fox, P. F. 1983. Thermal stability of an extracellular proteinase from Pseudomonas fluorescens AFT 36. J. Dairy Res. 50, 171–184.

    CAS  Google Scholar 

  • Stetter, K. O. and Kandier, O. 1973. Formation of DL-lactic acid by lactobacilli and characterization of a lactic acid racemase from several streptobacteria. Arch. Mikrobiol 94, 221–247.

    CAS  Google Scholar 

  • Sullivan, J. J., Mou, L., Rood, J. I. and Jago, G. R. 1973. The enzymic degradation of bitter peptides by starter streptococci. Aust. J. Dairy Technol. 28, 20–26.

    CAS  Google Scholar 

  • Sundman, V. 1953. On the microbiology of Finnish ropy sour milk. 13th Int. Dairy Congr. 3, 1420–1427.

    Google Scholar 

  • Sutherland, I. W. 1977A. Bacterial exopolysaccharides—their nature and production. In: Surface Carbohydrates of the Prokaryotic Cell I. Sutherland (Editor). Academic Press, New York, pp. 27–96.

    Google Scholar 

  • Sutherland, I. W. 1977B. Microbial exopolysaccharide synthesis. In: Extracellular Microbial Polysaccharides. P. A. Sanford and A. Laskin (Editors) ACS, Symposium Series 45, American Chemical Society, Washington, D.C. pp. 40–57.

    Google Scholar 

  • Sutherland, I. W. 1979. Microbial exopolysaccharides: Control of synthesis and acylation. In: Microbial Polysaccharides and Polysaccharases. R. C. W. Berkeley, G. W. Gooday and D. C. Ellwood, (Editors). Academic Press, New York, pp. 1–34.

    Google Scholar 

  • Tacquet, A., Tison, F. and Devulder, B. 1961. Bactericidal action of yogurt on mycobacteria. Ann. Inst. Pasteur. 100, 581–587. (French)

    CAS  Google Scholar 

  • Tamime, A. Y., and Deeth, H. C. 1980. Yogurt: Technology and biochemistry. J. Food Prot. 43, 939–977.

    CAS  Google Scholar 

  • Thomas, T. D. 1975. Tagatose-l,6-diphosphate activation of lactate dehydrogenase from Streptococcus cremoris. Biochem. Biophys. Res. Commun. 63, 1035–1042.

    CAS  Google Scholar 

  • Thomas, T. D. 1976A. Activator specificity of pyruvate kinase from lactic streptococci. J. Bacterial 125, 1240–1242.

    CAS  Google Scholar 

  • Thomas, T. D. 1976B. Regulation of lactose fermentation in Group N streptococci. Appl. Environ. Microbiol. 32, 474–478.

    CAS  Google Scholar 

  • Thomas, T. D. and Crow, V. L. 1984. Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Appl. Environ. Microbiol. 48, 186–191.

    CAS  Google Scholar 

  • Thomas, T. D., Ellwood, D. C. and Longyear, V. M. C. 1979. Change from homo-to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138, 109–117.

    CAS  Google Scholar 

  • Thomas, T. D. and Mills, O. E. 1981. Proteolytic enzymes of starter bacteria. Neth. Milk Dairy J. 35, 255–273.

    CAS  Google Scholar 

  • Thomas, T. D., Tlirner, K. W. and Crow, V. L. 1980. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: Pathways, products, and regulation. J. Bacteriol. 144, 672–682.

    CAS  Google Scholar 

  • Thompson, J. 1978. In vivo regulation of glycolysis and characterization of sugenphos-photransferase systems in Streptococcus lactis. J. Bacteriol. 136, 465–476.

    CAS  Google Scholar 

  • Thompson, J. 1980. Galactose transport systems in Streptococcus lactis. J. Bacteriol. 144, 683–691.

    CAS  Google Scholar 

  • Thompson, J. and Thomas, T. D. 1977. Phosphoenolpyruvate and 2-phosphoglycerate: Endogenous energy sources for sugar accumulation by starved cells of Streptococcus lactis. J. Bacteriol. 130, 583–595.

    CAS  Google Scholar 

  • Thompson, J. D., Turner, K. W. and Thomas, T. D. 1978. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis. J. Bacteriol. 133, 1163–1174.

    CAS  Google Scholar 

  • Thomson, J. and Torchia, D. A. 1984. Use of 31P nuclear magnetic resonance spectroscopy of 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J. Bacteriol. 158, 791–800.

    Google Scholar 

  • Tinson, W., Hillier, A. J. and Jago, G. R. 1982. Metabolism of Streptococcus thermophilus. 1. Utilization of lactose, glucose and galactose. Aust. J. Dairy Technol. 37, 8–13.

    CAS  Google Scholar 

  • Toba, T. and Adachi, S. 1978. Hydrolysis of lactose by microbial β-galactosidases. Formation of oligosaccharides with special reference to 2-o-β-D-galactopyranosyl-D-glucose. J. Dairy Sci. 61, 33–38.

    CAS  Google Scholar 

  • Torgersen, H. and Sorhaug, T. 1978. Peptide hydrolases of Brevibacterium linens. FEMS Microbiol. Lett. 4, 151–153.

    CAS  Google Scholar 

  • Trieu-Cuot, P. and Gripon, J. C. 1981. Casein hydrolysis by Penicillium caseicolum and Penicillium roqueforti proteinases: A study with isoelectric focusing and two-dimensional electrophoresis. Neth. Milk Dairy J. 35, 353–357.

    CAS  Google Scholar 

  • Trieu-Cuot, P., Archiere-Haze, M. and Gripon, J. C. 1982. Effect of aspartyl proteinases of Penicillium caseicolum and Penicillium roqueforti on caseins. J. Dairy Res. 49, 487–500.

    CAS  Google Scholar 

  • Troy, F. A., Freeman, F. E. and Heath, E. C. 1971. The biosynthesis of capsular polysaccharide in Aerobacter aerogenes. J. Biol. Chem. 246, 118–133.

    CAS  Google Scholar 

  • Vallea, E. and Mocquot, G. 1968. Preparation of a concentrated suspension of thermophilic lactic acid bacteria for use in cheesemaking. Lait 48, 631–643. (French)

    Google Scholar 

  • Vedamuthu, E. R., Sandine, W. E. and Elliker, P. R. 1966. Flavor and texture in Cheddar cheese. I. Role of mixed strain lactic starter cultures. J. Dairy Sci. 49, 144–150.

    CAS  Google Scholar 

  • Vincent, J. G., Veomett, R. C. and Riley, R. F. 1959. Antibacterial activity associated with Lactobacillus acidophilus. J. Bacteriol. 78, 477–484.

    CAS  Google Scholar 

  • Virtanen, A. I. and Nikkla, O. E. 1947. “Malty” flavor in starter and butter. J. Dairy Res. 15, 89–93.

    Google Scholar 

  • Visser, S. 1981. Proteolytic enzymes and their action on milk proteins. A review. Neth. Milk Dairy J. 35, 65–88.

    CAS  Google Scholar 

  • Waes, G. 1970. Preservation of lactic acid bacteria at temperatures of -20°, -30° and -196°C. Rev. Agr. 23, 1097–1109. (French)

    Google Scholar 

  • Walker, G. A. and Kilgour, G. L. 1965. Pyridine nucleotide oxidizing enzymes of Lactobacillus casei. II. Oxidase and peroxidase. Arch. Biochem. Biophys. 111, 534–539.

    CAS  Google Scholar 

  • Wallenfels, K. and Mulhotra, O. P. 1961. Galactosidases. Adv. Carbohydrate Chem. 16, 239–298.

    CAS  Google Scholar 

  • Wang, J. J. and Frank, J. F. 1981. Characterization of psychrotrophic bacterial contamination in commercial buttermilk. J. Dairy Sci. 64, 2154–2160.

    Google Scholar 

  • Wasserman, A. E. 1960A. Whey utilization. II. Oxygen requirements of Saccharomyces fragilis growing in whey medium. Appl. MicrobioL 8, 291–293.

    CAS  Google Scholar 

  • Wasserman, A. E. 1960B. Whey utilization. IV. Availability of whey nitrogen for the growth of Saccharomyces fragilis. J. Dairy Sci. 43, 1231–1234.

    CAS  Google Scholar 

  • Wasserman, A. E. and Hampson, J. W. 1960. Whey utilization. III. Oxygen absorption rates and the growth of Saccharomyces fragilis in several propagators. Appl. Microbiol. 8, 293–297.

    CAS  Google Scholar 

  • Wasserman, A. E., Hampson, J. W., Alvare, N. F. and Alvare, N. J. 1961. Whey utilization. V. Growth of Saccaromyces fragilis in whey in a pilot plant. J. Dairy Sci. 44, 387–392.

    CAS  Google Scholar 

  • Wasserman, A. E., Hopkins, W. J. and Porges, N. 1958. Whey utilization—growth conditions for Saccharomyces fragilis. Sewage Ind. Wastes 30, 913–920.

    CAS  Google Scholar 

  • Weinberg, E. D. 1977. Introduction. In: Microorganisms and Minerals. E. D. Weinberg (Editor). Marcel Dekker, New York.

    Google Scholar 

  • Weissbach, H., Redfield, B. and Peterkofsky, A. 1961. Conversion of vitamin B12 to coenzyme B12 in cell-free extracts of Clostridium tetanomorphum. J. Biol Chem. 236, PC40–PC42.

    CAS  Google Scholar 

  • Wendorff, W. L., Amundson, C. H. and Olson, N. F. 1970. Nutrient requirement and growth conditions for production of lactase enzyme by Saccharomyces fragilis. J. Milk Food Technol. 33, 451–455.

    CAS  Google Scholar 

  • Wheater, D. M., Hirsch, A. and Mattick, A. T. R. 1951. “Lactobacillin,” an antibiotic from lactobacilli. Nature 168, 659.

    CAS  Google Scholar 

  • Wierzbicki, L. E. and Kosikowski, F. V. 1973A. Lactase potential of various microorganisms in whey. J. Dairy Sci. 56, 26–31.

    CAS  Google Scholar 

  • Wierzbicki, L. E. and Kosikowski, F. V. 1973B. Formation of oligosaccharides during β-galactosidase action on lactose. J. Dairy Sci. 56, 1400–1404.

    CAS  Google Scholar 

  • Winkler, S. 1953. Antibiotic activity of lactobacilli against propionic acid bacteria. 13th Int. Dairy Congr. Proc. 3, 1164–1167. (German)

    Google Scholar 

  • Witter, L. D. 1961. Psychrophilic bacteria—A review. J. Dairy Sci. 44, 983–1015.

    Google Scholar 

  • Yamada, T. and Carlsson, J. 1975A. Regulation of lactate dehydrogenase and change of fermentation products in streptococci. J. Bacteriol. 124, 55–61.

    CAS  Google Scholar 

  • Yamada, T. and Carlsson, J. 1975B. Glucose-6-phosphate dependent pyruvate kinase in Streptococcus mutans. J. Bacteriol. 124, 562–563.

    CAS  Google Scholar 

  • Yamasaki, I. 1939. Flavins that are formed during the acetone-butyl alcohol fermentation. Part I. Flavins from rice. Biochem. Z. 300, 160–166. (German)

    CAS  Google Scholar 

  • Yamasaki, I. 1941. Flavin formation by the acetone-butyl alcohol bacteria. IV. Biochem. Z. 307, 431–441. (German)

    CAS  Google Scholar 

  • Yamasaki, I., and Yositome, W. 1938. Formation of the vitamin B12-complex from cereals by the acetone-butyl alcohol bacteria. Biochem. Z. 297, 398–411. (German)

    CAS  Google Scholar 

  • Yates, A. R., Irvine, O. R. and Cunningham, J. D. 1955. Chromatographic studies on proteolytic bacteria in their relationship to flavor development in Cheddar cheese. Can. J. Agr. Sci. 35, 337–343.

    CAS  Google Scholar 

  • Zevaco, C. and Desmazeaud, J. 1980. Hydrolysis of β-casein and peptides by intracellular neutral protease of Streptococcus diacetylactis. J. Dairy Sci. 63, 15–24.

    CAS  Google Scholar 

  • Zevaco, C., Hermeir, J. and Gripon, J. C. 1973. Proteolytic system of Penicillium roqueforti. II. Purification and properties of the acid protease. Biochemie 55, 1353–1360.

    CAS  Google Scholar 

  • Ziemba, J. V. 1970. Top-quality cultures made in unique plants. Food Eng. 42(1), 68–71.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Van Nostrand Reinhold Company Inc.

About this chapter

Cite this chapter

Frank, J.F., Marth, E.H. (1988). Fermentations. In: Wong, N.P., Jenness, R., Keeney, M., Marth, E.H. (eds) Fundamentals of Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7050-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7050-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-20489-1

  • Online ISBN: 978-1-4615-7050-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics