Skip to main content

The Classical Limit of Quantum Mechanics in a Curved Space Background

  • Chapter
Functional Integration
  • 144 Accesses

Abstract

Quasiclassical representations are given for the diffusion (heat) equation and the Schrödinger equation on a Riemannian manifold. These give an unambiguous functional integral expression for the solution of the diffusion (heat) equation and a (formal) unambiguous functional integral expression for the wave function solution of the Schrödinger equation intimately related to a corresponding classical mechanical problem on the manifold. Guided by these expressions we prove that in the curved space background of a Riemannian manifold quantum mechanics tends to classical mechanics as ħ tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.D. Elworthy, and A. Truman, Classical Mechanics, the Diffusion (heat) equation and the Schrödinger equation on Riemannian manifolds, Warwick University and Heriot-Watt University preprint (1979).

    Google Scholar 

  2. K.D. Elworthy, Stochastic Differential Equations on Manifolds, notes of seminars by J. Eells and K.D. Elworthy, Department of Mathematics, University of Warwick, Coventry (1978).

    Google Scholar 

  3. C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Path Integration in nonrelativistic quantum mechanics, Physics Reports, 50, 257 (1979).

    Article  MathSciNet  Google Scholar 

  4. A. Truman, Polygonal path formulation of the Feynman path integral in “Feynman Path Integrals,” Albeverio et al., ed., Springer Lecture Notes in Physics, 106, (1979).

    Google Scholar 

  5. N. Ikeda, S. Nakao, and Y. Yamato, A class of approximations of Brownian motion, Publ. RIMS, Kyoto University 13 (1977).

    Google Scholar 

  6. P. Malliavin, Un principe de transfert et son application au Calcul des Variations, C.R. Acad. Sc., Paris, 284, Serie A (1977).

    Google Scholar 

  7. S. Kobayashi, and K. Nomizu, “Foundations of Differential Geometry,” Vol I, Interscience, New York (1963).

    MATH  Google Scholar 

  8. A. Truman, Classical Mechanics, the Diffusion (heat) equation and the Schrödinger equation, J. Math. Phys., 18, 2308 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  9. E.J. McShane, “Stochastic Calculus and Stochastic Models,” Academic Press, New York (1974).

    MATH  Google Scholar 

  10. K.D. Elworthy, Stochastic Dynamical Systems and their flows in “Stochastic Analysis,” A. Friedman, and M. Pinsky, eds., Academic Press, New York (1978).

    Google Scholar 

  11. M. Gaffney, A Special Stoke’s theorem for complete Riemannian manifolds, Ann. of Math. 60, 140 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Nelson, Feynman integrals and the Schrödinger equation, J. Math. Phys., 5, 332 (1964).

    Article  MATH  Google Scholar 

  13. K.D. Elworthy, and A. Truman, Feynman maps, Cameron-Martin formulae, and the anharmonic oscillator, in preparation.

    Google Scholar 

  14. M. Reed, and B. Simon, “Methods of Modern Mathematical Physics, II, Fourier Analysis, Self-Adjointness,” Academic Press, New York (1975).

    MATH  Google Scholar 

  15. M. Berger, “Lectures on Geodesics in Riemannian Geometry,” Tata Institute Notes, Bombay (1965).

    MATH  Google Scholar 

  16. F. Langouche, D. Roekaerts, and E. Tirapegui in these proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Elworthy, D., Truman, A. (1980). The Classical Limit of Quantum Mechanics in a Curved Space Background. In: Antoine, JP., Tirapegui, E. (eds) Functional Integration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7035-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7035-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7037-0

  • Online ISBN: 978-1-4615-7035-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics