Skip to main content

Clouds, Computers and Complexity

  • Chapter

Part of the book series: Frontiers of Computing Systems Research ((FCSR,volume 2))

Abstract

Modern computers are complex. But is it meaningful to say that a computer is complex when compared to a system as intricate as the brain? Is a miniature version of a computer more complex, more intricate—or just smaller? How can we begin to conceive of ever more complex systems if we lack the ability to describe them? Clearly, we need to add new terminology to our descriptive lexicon of complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, CA (1982).

    MATH  Google Scholar 

  2. M. Barnsley, Fractals Everywhere, Academic Press, Inc., San Diego, CA (1988).

    MATH  Google Scholar 

  3. J. Feder, Fractals, Plenum Press, New York, NY (1988).

    MATH  Google Scholar 

  4. Fractals’ Physical Origin and Properties, Proceedings of the special seminar on fractals, held October 9–15, 1988, Erice, Sicily, Italy. L. Pietronero (Ed.), Plenum Press, New York, NY (1989).

    Google Scholar 

  5. P. Bak, Chao Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev A, vol. 38(1), pp. 364–374 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bak and Kan Chen, Self-organized criticality, Scientific American, pp. 47–53, January 1991.

    Google Scholar 

  7. A. Bruce and D. Wallace, Critical point phenomena: universal physics at large length scales, in The New Physics, Cambridge University Press, Cambridge, England, Ch. 8, pp. 236–267 (1989).

    Google Scholar 

  8. J. H. Kaufman, O. R. Melroy, and G. M. Dimino, Information-theoretic study of pattern formation: rate of entropy production of random fractals, Phys. Rev. A, vol. 39(3), pp. 1420–1428 (1989).

    Article  MathSciNet  Google Scholar 

  9. Proc. IEEE, Special issue on neural networks, I: Theory and Modeling, vol. 78(9), September (1990).

    Google Scholar 

  10. Proc. IEEE, Special issue on neural networks, II: Analysis, Techniques, and Applications, vol. 78(10), October (1990)

    Google Scholar 

  11. J. A. Anderson and E. Rosenfeld (Eds.), Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA (1988).

    Google Scholar 

  12. S. Lovejoy, Area-perimeter relation for rain and cloud areas, Science, vol. 216(9), pp. 185–187 (1982).

    Article  Google Scholar 

  13. D. K. Ferry, Interconnection lengths and VLSI, IEEE Circuits and Devices Magazine, pp. 39–42, July 1985.

    Google Scholar 

  14. H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Ch. 9, pp. 416–421, Addison-Wesley Publishing Co., Reading, MA (1990).

    Google Scholar 

  15. D. K. Ferry, L. A. Akers, and E. W. Greeneich, Ultra Large Scale Integrated Microelectronics, Ch. 5., pp. 214–216, Prentice-Hall, En-glewood Cliffs, NJ (1988).

    Google Scholar 

  16. B. S. Landman and R. L. Russo, On a pin versus block relationship for partitions of logic graphs, IEEE Trans. Computers, vol. C-20(12), pp. 1469–1479 (1971).

    Article  Google Scholar 

  17. W. E. Donath, Placement and average interconnection lengths of computer logic, IEEE Trans. Circuits and Systems, vol. CAS-26(4), pp. 272–277 (1979).

    Article  Google Scholar 

  18. J. E. Cotter and P. Christie, The analytical form of the length distri-bution function for computer interconnections, IEEE Trans. Circuit and Systems, vol. CAS-38(3), pp. 317–320 (1991).

    Article  Google Scholar 

  19. W. E. Donath, Wire length distribution for placements of computer logic, IBM. J. Res. Dev., vol. 25(3), pp. 152–155 (1981).

    Article  Google Scholar 

  20. R. W. Keyes, The wire-limited logic chip, IEEE J. Solid-State Circuits, vol. SC-17(6), pp. 1232–1233 (1982).

    Article  Google Scholar 

  21. The Author is indebted to Francesco Palmieri, Dept. Electrical and Systems Engineering, University of Connecticut, for providing this derivation.

    Google Scholar 

  22. D. F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing for VLSI, Kluwer Academic Publishers, Norwell, MA (1988).

    Book  MATH  Google Scholar 

  23. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, D. Reidel Publishing Co., Dordrecht, Holland (1988).

    Google Scholar 

  24. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Optimization by simulated annealing, Science, vol. 220, pp. 671–680 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  25. W. E. Donath, Statistical properties of the placement of a logic graph, SIAM J. App. Math., vol. 16(2), pp. 439–457 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. W. Keyes, The Physics of VLSI Systems, Ch. 8, pp. 178–182, Addison-Wesley Publishing Co., Wokingham, England (1987).

    Google Scholar 

  27. R. C. Tolman, The Principles of Statistical Mechanics, Ch X, Dover Publications, Inc., New York, NY (1978). First published in 1938 by Oxford University Press.

    Google Scholar 

  28. A. P. French and E. F. Taylor, An Introduction to Quantum Physics, Ch. 13, W. W. Norton and Co., Inc., New York, NY (1978).

    Google Scholar 

  29. F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, (Fifth Ed.) Ch. 11, Addison-Wesley Publishing Co., Reading, MA (1980).

    Google Scholar 

  30. To the Author’s knowledge this is the first time this expression has been published. It may be easily verified by following the procedure outlined in [29].

    Google Scholar 

  31. N. Metropolis, A. W. Rosenbluth, A. H. Teller, M. N. Rosenbluth, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., vol. 21(6), pp. 1087–1092 (1953).

    Article  Google Scholar 

  32. P. Christie and S. B. Styer, A fractal description of computer interconnection distributions, in Proc. SPIE vol. 1390, Microelectronic Interconnects and Packaging: System Integration, pp. 359–367 (1990).

    Google Scholar 

  33. S. Wang, Fundamentals of Semiconductor Theory and Device Physics, Ch. 6, pp. 250–255, Prentice-Hall, Inc., Englewood Cliffs, NJ (1989).

    Google Scholar 

  34. B. B. Mandelbrot, Y. Gefen, A. Aharony, and J. Peyrière, Fractals: their transfer matrices and their eigen-dimension al sequences, J. Phys. A, vol. 18, pp. 335–354 (1985).

    Article  MathSciNet  Google Scholar 

  35. A. Aharony, Y. Gefen, A. Kapitulnik, and M. Murat, Fractal eigendi-mensionalities for percolation clusters, Phys. Rev. B, vol. 31(7), pp. 4721–4724(1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Christie, P. (1991). Clouds, Computers and Complexity. In: Tewksbury, S.K. (eds) Frontiers of Computing Systems Research. Frontiers of Computing Systems Research, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7032-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7032-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7034-9

  • Online ISBN: 978-1-4615-7032-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics